Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 104205    DOI: 10.1088/1674-1056/ab9de5
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultra-wideband linear-to-circular polarization conversion metasurface

Bao-Qin Lin(林宝勤)†, Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新), Zu-Liang Wang(王祖良), Shi-Qi Huang(黄世奇), and Yan-Wen Wang(王衍文)
1 School of Information Engineering, Xijing University, Xi’an 710123, China
Abstract  

An ultra-wideband and high-efficiency reflective linear-to-circular polarization conversion metasurface is proposed. The proposed metasurface is composed of a square array of a corner-truncated square patch printed on grounded dielectric substrate and covered with a dielectric layer, which is an orthotropic anisotropic structure with a pair of mutually perpendicular symmetric axes u and v along the directions with the tilt angles of ±45° with respect to the vertical y axis. When the u- and v-polarized waves are incident on the proposed metasurface, the phase difference between the two reflection coefficients is close to –90° in an ultra-wide frequency band, so it can realize high-efficiency and ultra-wideband LTC polarization conversion under both x- and y-polarized incidences in this band. The proposed polarization conversion metasurface is simulated and measured. Both the simulated and measured results show that the axial ratio (AR) of the reflected wave is kept below 3 dB in the ultra-wide frequency band of 5.87 GHz–21.13 GHz, which is corresponding to a relative bandwidth of 113%; moreover, the polarization conversion rate (PCR) can be kept larger than 99% in a frequency range of 8.08 GHz–20.92 GHz.

Keywords:  metasurface      polarization conversion      circular polarization  
Received:  19 March 2020      Revised:  06 May 2020      Accepted manuscript online:  18 June 2020
PACS:  42.25.Ja (Polarization)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Corresponding Authors:  Corresponding author. E-mail: aflbq@sina.com   
About author: 
†Corresponding author. E-mail: aflbq@sina.com
* Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2019JM-077 and 2018JM-6098), the Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant No. 18JK1195), and the Shaanxi Key Research and Development Project, China (Grant No. 2019GY-055).

Cite this article: 

Bao-Qin Lin(林宝勤)†, Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新), Zu-Liang Wang(王祖良), Shi-Qi Huang(黄世奇), and Yan-Wen Wang(王衍文) Ultra-wideband linear-to-circular polarization conversion metasurface 2020 Chin. Phys. B 29 104205

Fig. 1.  

Unit cell of proposed polarization conversion metasurface: (a) three-dimensional (3D) view, and (b) top view.

Fig. 2.  

Simulated results of proposed polarization conversion metasurface undeer y-polarized normal incidence: (a) phase difference Δ φyx between rxy and ryy and (b) magnitude of rxy and ryy.

Fig. 3.  

Axial ratio of reflected wave under y-polarized normal incidence.

Fig. 4.  

(a) LTC reflection coefficients and (b) polarization conversion rate (PCR) of proposed polarization conversion metasurface under y-polarized normal incidence.

Fig. 5.  

Intuitive schematic diagram of phase difference between co- and cross-polarization reflection coefficients under x- and y-polarized incidences.

Fig. 6.  

Simulated results of proposed polarization conversion metasurface under u- and v-polarized normal incidences: (a) phase difference between ruu and rvv, (b) magnitudes and (c) phases of ruu and rvv, (d) axial ratio (AR) of the reflected wave.

Fig. 7.  

(a) Photographs of experimental sample, (b) schematic diagram of measurement setup, and (c) measured results: axial ratio (AR) of reflected wave under x- and y-polarized incidences.

[1]
Kajiwara A 1995 IEEE Trans. Veh. Technol. 44 487 DOI: 10.1109/25.406616
[2]
Chen H, Wang J, Ma H et al. 2015 Chin. Phys. B 24 014201 DOI: 10.1088/1674-1056/24/1/014201
[3]
Gao X, Han X, Cao W, Li H, Ma H 2015 IEEE Trans. Anten. Propag. 63 3522 DOI: 10.1109/TAP.2015.2434392
[4]
Zhou G, Tao X, Shen Z et al. 2016 Sci. Rep. 6 38925 DOI: 10.1038/srep38925
[5]
Dong G, Shi H, Xia S, Li W, Zhang A, Zhuo X, Wei X 2016 Chin. Phys. B 25 084202 DOI: 10.1088/1674-1056/25/8/084202
[6]
Sun H, Gu C, Chen X, Li Z, Li L, Martion F 2017 J. Appl. Phys. 121 174902 DOI: 10.1063/1.4982916
[7]
Xu P, Wang S Y, Geyi W 2017 J. Appl. Phys. 121 144502 DOI: 10.1063/1.4979880
[8]
Jin X, Rongqiang L, Jin Q 2018 Opt. Express 26 20913 DOI: 10.1364/OE.26.020913
[9]
Pu Y, Luo Y, Liu L, He D, Xu H, Jing Y, Liu Z 2018 Chin. Phys. B 27 024202 DOI: 10.1088/1674-1056/27/2/024202
[10]
Khan M I, Tahir F A 2018 Chin. Phys. B 27 014101 DOI: 10.1088/1674-1056/27/1/014101
[11]
Lin B, Guo J, Lv L et al. 2019 Appl. Phys. A 125 76 DOI: 10.1007/s00339-018-2368-9
[12]
Xu, Li R, Jiang X, Wang S, Han T 2019 Acta Phys. Sin. 68 117801 in Chinese DOI: 10.7498/aps.68.20190267
[13]
Wang Q, Kong X, Yan X 2019 Chin. Phys. B 28 074205 DOI: 10.1088/1674-1056/28/7/074205
[14]
Li Y, Zhang Q, Qu S et al. 2015 Chin. Phys. B 24 014202 DOI: 10.1088/1674-1056/24/1/014202
[15]
Yang J, Qu S, Ma H et al. 2017 Appl. Phys. A 123 537 DOI: 10.1007/s00339-017-1162-4
[16]
Huang X, Chen J, Yang H 2017 J. Appl. Phys. 122 043102 DOI: 10.1063/1.4996643
[17]
Wang Q, Plum E, Yang Q, Zhang X, Xu Q 2018 Light: Science & Applications 7 25 DOI: 10.1038/s41377-018-0019-8
[18]
Lin B, Guo J, Chu P et al. 2018 Phys. Rev. Appl. 9 024038 DOI: 10.1103/PhysRevAppl..9.024038
[19]
Huang C, Feng Y, Zhao J et al. 2012 Phys. Rev. B 85 195131 DOI: 10.1103/PhysRevB.85.195131
[20]
Liu W, Chen S, Li Z et al. 2015 Opt. Lett. 40 3185 DOI: 10.1364/OL.40.003185
[21]
Zhou G, Tao X, Shen Z et al. 2016 Sci. Rep. 6 38925 DOI: 10.1038/srep38925
[22]
Chen K, Bai Y, Bu T et al. 2016 Opt. Eng. 55 030801 DOI: 10.1117/1.OE.55.3.030801
[23]
Wang S Y, Liu W, Geyi W 2018 Sci. Rep. 8 3791 DOI: 10.1038/s41598-018-22092-4
[24]
Pfeiffer C, Zhang C, Ray V, Guo L J, Grbic A 2014 Phys. Rev. Lett. 113 023902 DOI: 10.1103/PhysRevLett.113.023902
[25]
Wu X, Meng Y, Wang L, Tian J, Dai S, Wen W 2016 Appl. Phys. Lett. 108 183502 DOI: 10.1063/1.4948594
[26]
Fernández O, Gómez A et al. 2017 IEEE Anten. & Wireless Propag. Lett. 16 2307 DOI: 10.1109/LAWP.2017.2715830
[27]
Gao X, Yu X Y, Cao W P, Jiang Y N, Yu X H 2016 Chin. Phys. B 25 128102 DOI: 10.1088/1674-1056/25/12/128102
[28]
Jiang Y, Wang L, Wang J, Akwuruoha C, Cao W 2017 Opt. Express 25 27616 DOI: 10.1364/OE.25.027616
[29]
Ran Y, Shi L, Wang J, Wang S, Wang G, Liang J 2019 Opt. Commun. 451 124 DOI: 10.1016/j.optcom.2019.06.049
[30]
Fartookzadeh M 2017 J. Mod. Opt. 64 1854 DOI: 10.1080/09500340.2017.1322155
[31]
Mao C, Yang Y, He X et al. 2017 Appl. Phys. A 123 767 DOI: 10.1007/s00339-017-1322-6
[32]
Zheng Q, Guo C, Ding J 2018 IEEE Antennas and Wireless Propagation Lett. 17 1459 DOI: 10.1109/LAWP.2018.2849352
[33]
Mahdi F 2018 Modern Phys. Lett. B 32 1850274 DOI: 10.1142/S0217984918502743
[34]
Zeng L, Liu G, Zhang H, Huang T 2019 Acta Phys. Sin. 68 054101 in Chinese DOI: 10.7498/aps.68.20181615
[35]
Li Y, Zhang J, Qu S, Wang J et al. 2015 J. Appl. Phys. 117 044501 DOI: 10.1063/1.4906220
[36]
Baena D, Glybovski B, del Risco P, Slobozhanyuk P, Belov A 2017 IEEE Trans. Anten. Propag. 65 4124 DOI: 10.1109/TAP.2017.2717964
[37]
Baena J, Risco J D, Slobozhanyuk A, Belov P 2015 Phys. Rev. B 92 245413 DOI: 10.1103/PhysRevB.92.245413
[38]
Abadi S, Behdad N 2016 IEEE Trans. Anten. Propag. 64 525 DOI: 10.1109/TAP.2015.2504999
[39]
Wu J L, Lin B Q, Da X Y 2016 Chin. Phys. B 25 088101 DOI: 10.1088/1674-1056/25/8/088101
[40]
Lin B, Wu J, Da X et al. 2017 Appl. Phys. A 123 43 DOI: 10.1007/s00339-016-0673-8
[41]
Jiang W, Wen W 2017 Opt. Express 25 3805 DOI: 10.1364/OE.25.003805
[42]
Zhang W, Li J Y, Xie J 2017 IEEE Trans. Anten. Propag. 65 5623 DOI: 10.1109/TAP.2017.2735459
[43]
Lin B, Guo J, Huang B, Fang L, Chu P 2018 Chin. Phys. B 27 054204 DOI: 10.1088/1674-1056/27/5/054204
[44]
Akgol O, Unal E, Altintas O et al. 2018 Optik 161 12 DOI: 10.1016/j.ijleo.2018.02.028
[1] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[2] Generation of elliptical airy vortex beams based on all-dielectric metasurface
Xiao-Ju Xue(薛晓菊), Bi-Jun Xu(徐弼军), Bai-Rui Wu(吴白瑞), Xiao-Gang Wang(汪小刚), Xin-Ning Yu(俞昕宁), Lu Lin(林露), and Hong-Qiang Li(李宏强). Chin. Phys. B, 2023, 32(2): 024215.
[3] High efficiency of broadband transmissive metasurface terahertz polarization converter
Qiangguo Zhou(周强国), Yang Li(李洋), Yongzhen Li(李永振), Niangjuan Yao(姚娘娟), and Zhiming Huang(黄志明). Chin. Phys. B, 2023, 32(2): 024201.
[4] Graphene metasurface-based switchable terahertz half-/quarter-wave plate with a broad bandwidth
Xiaoqing Luo(罗小青), Juan Luo(罗娟), Fangrong Hu(胡放荣), and Guangyuan Li(李光元). Chin. Phys. B, 2023, 32(2): 027801.
[5] High gain and circularly polarized substrate integrated waveguide cavity antenna array based on metasurface
Hao Bai(白昊), Guang-Ming Wang(王光明), and Xiao-Jun Zou(邹晓鋆). Chin. Phys. B, 2023, 32(1): 014101.
[6] Dual-function terahertz metasurface based on vanadium dioxide and graphene
Jiu-Sheng Li(李九生) and Zhe-Wen Li(黎哲文). Chin. Phys. B, 2022, 31(9): 094201.
[7] Real-time programmable coding metasurface antenna for multibeam switching and scanning
Jia-Yu Yu(余佳宇), Qiu-Rong Zheng(郑秋容), Bin Zhang(张斌), Jie He(贺杰), Xiang-Ming Hu(胡湘明), and Jie Liu(刘杰). Chin. Phys. B, 2022, 31(9): 090704.
[8] Transmissive 2-bit anisotropic coding metasurface
Pengtao Lai(来鹏涛), Zenglin Li(李增霖), Wei Wang(王炜), Jia Qu(曲嘉), Liangwei Wu(吴良威),Tingting Lv(吕婷婷), Bo Lv(吕博), Zheng Zhu(朱正), Yuxiang Li(李玉祥),Chunying Guan(关春颖), Huifeng Ma(马慧锋), and Jinhui Shi(史金辉). Chin. Phys. B, 2022, 31(9): 098102.
[9] Controlling acoustic orbital angular momentum with artificial structures: From physics to application
Wei Wang(王未), Jingjing Liu(刘京京), Bin Liang (梁彬), and Jianchun Cheng(程建春). Chin. Phys. B, 2022, 31(9): 094302.
[10] Multiple bottle beams based on metasurface optical field modulation and their capture of multiple atoms
Xichun Zhang(张希纯), Wensheng Fu(付文升), Jinguang Lv(吕金光), Chong Zhang(张崇),Xin Zhao(赵鑫), Weiyan Li(李卫岩), and He Zhang(张贺). Chin. Phys. B, 2022, 31(8): 088103.
[11] Design of an all-dielectric long-wave infrared wide-angle metalens
Ning Zhang(张宁), Qingzhi Li(李青芝), Jun Chen(陈骏), Feng Tang(唐烽),Jingjun Wu(伍景军), Xin Ye(叶鑫), and Liming Yang(杨李茗). Chin. Phys. B, 2022, 31(7): 074212.
[12] Switchable terahertz polarization converter based on VO2 metamaterial
Haotian Du(杜皓天), Mingzhu Jiang(江明珠), Lizhen Zeng(曾丽珍), Longhui Zhang(张隆辉), Weilin Xu(徐卫林), Xiaowen Zhang(张小文), and Fangrong Hu(胡放荣). Chin. Phys. B, 2022, 31(6): 064210.
[13] Multi-function terahertz wave manipulation utilizing Fourier convolution operation metasurface
Min Zhong(仲敏) and Jiu-Sheng Li(李九生). Chin. Phys. B, 2022, 31(5): 054207.
[14] Design of cylindrical conformal transmitted metasurface for orbital angular momentum vortex wave generation
Ben Fu(付犇), Shi-Xing Yu(余世星), Na Kou(寇娜), Zhao Ding(丁召), and Zheng-Ping Zhang(张正平). Chin. Phys. B, 2022, 31(4): 040703.
[15] An ultra-wideband 2-bit coding metasurface using Pancharatnam—Berry phase for radar cross-section reduction
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新),Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2022, 31(3): 034204.
No Suggested Reading articles found!