Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 104205    DOI: 10.1088/1674-1056/ab9de5
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Ultra-wideband linear-to-circular polarization conversion metasurface

Bao-Qin Lin(林宝勤)1,†(), Lin-Tao Lv(吕林涛)1, Jian-Xin Guo(郭建新)1, Zu-Liang Wang(王祖良)1, Shi-Qi Huang(黄世奇)1, Yan-Wen Wang(王衍文)1
1 School of Information Engineering, Xijing University, Xi’an 710123, China
Abstract  

An ultra-wideband and high-efficiency reflective linear-to-circular polarization conversion metasurface is proposed. The proposed metasurface is composed of a square array of a corner-truncated square patch printed on grounded dielectric substrate and covered with a dielectric layer, which is an orthotropic anisotropic structure with a pair of mutually perpendicular symmetric axes u and v along the directions with the tilt angles of ±45° with respect to the vertical y axis. When the u- and v-polarized waves are incident on the proposed metasurface, the phase difference between the two reflection coefficients is close to –90° in an ultra-wide frequency band, so it can realize high-efficiency and ultra-wideband LTC polarization conversion under both x- and y-polarized incidences in this band. The proposed polarization conversion metasurface is simulated and measured. Both the simulated and measured results show that the axial ratio (AR) of the reflected wave is kept below 3 dB in the ultra-wide frequency band of 5.87 GHz–21.13 GHz, which is corresponding to a relative bandwidth of 113%; moreover, the polarization conversion rate (PCR) can be kept larger than 99% in a frequency range of 8.08 GHz–20.92 GHz.

Keywords:  metasurface      polarization conversion      circular polarization  
Received:  19 March 2020      Revised:  06 May 2020      Published:  05 October 2020
PACS:  42.25.Ja (Polarization)  
  42.79.Fm (Reflectors, beam splitters, and deflectors)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Corresponding Authors:  Bao-Qin Lin(林宝勤)   
About author: 
†Corresponding author. E-mail: aflbq@sina.com
* Project supported by the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2019JM-077 and 2018JM-6098), the Scientific Research Program Funded by Shaanxi Provincial Education Department (Grant No. 18JK1195), and the Shaanxi Key Research and Development Project, China (Grant No. 2019GY-055).

Cite this article: 

Bao-Qin Lin(林宝勤), Lin-Tao Lv(吕林涛), Jian-Xin Guo(郭建新), Zu-Liang Wang(王祖良), Shi-Qi Huang(黄世奇), Yan-Wen Wang(王衍文) Ultra-wideband linear-to-circular polarization conversion metasurface 2020 Chin. Phys. B 29 104205

Fig. 1.  

Unit cell of proposed polarization conversion metasurface: (a) three-dimensional (3D) view, and (b) top view.

Fig. 2.  

Simulated results of proposed polarization conversion metasurface undeer y-polarized normal incidence: (a) phase difference Δ φyx between rxy and ryy and (b) magnitude of rxy and ryy.

Fig. 3.  

Axial ratio of reflected wave under y-polarized normal incidence.

Fig. 4.  

(a) LTC reflection coefficients and (b) polarization conversion rate (PCR) of proposed polarization conversion metasurface under y-polarized normal incidence.

Fig. 5.  

Intuitive schematic diagram of phase difference between co- and cross-polarization reflection coefficients under x- and y-polarized incidences.

Fig. 6.  

Simulated results of proposed polarization conversion metasurface under u- and v-polarized normal incidences: (a) phase difference between ruu and rvv, (b) magnitudes and (c) phases of ruu and rvv, (d) axial ratio (AR) of the reflected wave.

Fig. 7.  

(a) Photographs of experimental sample, (b) schematic diagram of measurement setup, and (c) measured results: axial ratio (AR) of reflected wave under x- and y-polarized incidences.

[1]
Kajiwara A 1995 IEEE Trans. Veh. Technol. 44 487 DOI: 10.1109/25.406616
[2]
Chen H, Wang J, Ma H et al. 2015 Chin. Phys. B 24 014201 DOI: 10.1088/1674-1056/24/1/014201
[3]
Gao X, Han X, Cao W, Li H, Ma H 2015 IEEE Trans. Anten. Propag. 63 3522 DOI: 10.1109/TAP.2015.2434392
[4]
Zhou G, Tao X, Shen Z et al. 2016 Sci. Rep. 6 38925 DOI: 10.1038/srep38925
[5]
Dong G, Shi H, Xia S, Li W, Zhang A, Zhuo X, Wei X 2016 Chin. Phys. B 25 084202 DOI: 10.1088/1674-1056/25/8/084202
[6]
Sun H, Gu C, Chen X, Li Z, Li L, Martion F 2017 J. Appl. Phys. 121 174902 DOI: 10.1063/1.4982916
[7]
Xu P, Wang S Y, Geyi W 2017 J. Appl. Phys. 121 144502 DOI: 10.1063/1.4979880
[8]
Jin X, Rongqiang L, Jin Q 2018 Opt. Express 26 20913 DOI: 10.1364/OE.26.020913
[9]
Pu Y, Luo Y, Liu L, He D, Xu H, Jing Y, Liu Z 2018 Chin. Phys. B 27 024202 DOI: 10.1088/1674-1056/27/2/024202
[10]
Khan M I, Tahir F A 2018 Chin. Phys. B 27 014101 DOI: 10.1088/1674-1056/27/1/014101
[11]
Lin B, Guo J, Lv L et al. 2019 Appl. Phys. A 125 76 DOI: 10.1007/s00339-018-2368-9
[12]
Xu, Li R, Jiang X, Wang S, Han T 2019 Acta Phys. Sin. 68 117801 in Chinese DOI: 10.7498/aps.68.20190267
[13]
Wang Q, Kong X, Yan X 2019 Chin. Phys. B 28 074205 DOI: 10.1088/1674-1056/28/7/074205
[14]
Li Y, Zhang Q, Qu S et al. 2015 Chin. Phys. B 24 014202 DOI: 10.1088/1674-1056/24/1/014202
[15]
Yang J, Qu S, Ma H et al. 2017 Appl. Phys. A 123 537 DOI: 10.1007/s00339-017-1162-4
[16]
Huang X, Chen J, Yang H 2017 J. Appl. Phys. 122 043102 DOI: 10.1063/1.4996643
[17]
Wang Q, Plum E, Yang Q, Zhang X, Xu Q 2018 Light: Science & Applications 7 25 DOI: 10.1038/s41377-018-0019-8
[18]
Lin B, Guo J, Chu P et al. 2018 Phys. Rev. Appl. 9 024038 DOI: 10.1103/PhysRevAppl..9.024038
[19]
Huang C, Feng Y, Zhao J et al. 2012 Phys. Rev. B 85 195131 DOI: 10.1103/PhysRevB.85.195131
[20]
Liu W, Chen S, Li Z et al. 2015 Opt. Lett. 40 3185 DOI: 10.1364/OL.40.003185
[21]
Zhou G, Tao X, Shen Z et al. 2016 Sci. Rep. 6 38925 DOI: 10.1038/srep38925
[22]
Chen K, Bai Y, Bu T et al. 2016 Opt. Eng. 55 030801 DOI: 10.1117/1.OE.55.3.030801
[23]
Wang S Y, Liu W, Geyi W 2018 Sci. Rep. 8 3791 DOI: 10.1038/s41598-018-22092-4
[24]
Pfeiffer C, Zhang C, Ray V, Guo L J, Grbic A 2014 Phys. Rev. Lett. 113 023902 DOI: 10.1103/PhysRevLett.113.023902
[25]
Wu X, Meng Y, Wang L, Tian J, Dai S, Wen W 2016 Appl. Phys. Lett. 108 183502 DOI: 10.1063/1.4948594
[26]
Fernández O, Gómez A et al. 2017 IEEE Anten. & Wireless Propag. Lett. 16 2307 DOI: 10.1109/LAWP.2017.2715830
[27]
Gao X, Yu X Y, Cao W P, Jiang Y N, Yu X H 2016 Chin. Phys. B 25 128102 DOI: 10.1088/1674-1056/25/12/128102
[28]
Jiang Y, Wang L, Wang J, Akwuruoha C, Cao W 2017 Opt. Express 25 27616 DOI: 10.1364/OE.25.027616
[29]
Ran Y, Shi L, Wang J, Wang S, Wang G, Liang J 2019 Opt. Commun. 451 124 DOI: 10.1016/j.optcom.2019.06.049
[30]
Fartookzadeh M 2017 J. Mod. Opt. 64 1854 DOI: 10.1080/09500340.2017.1322155
[31]
Mao C, Yang Y, He X et al. 2017 Appl. Phys. A 123 767 DOI: 10.1007/s00339-017-1322-6
[32]
Zheng Q, Guo C, Ding J 2018 IEEE Antennas and Wireless Propagation Lett. 17 1459 DOI: 10.1109/LAWP.2018.2849352
[33]
Mahdi F 2018 Modern Phys. Lett. B 32 1850274 DOI: 10.1142/S0217984918502743
[34]
Zeng L, Liu G, Zhang H, Huang T 2019 Acta Phys. Sin. 68 054101 in Chinese DOI: 10.7498/aps.68.20181615
[35]
Li Y, Zhang J, Qu S, Wang J et al. 2015 J. Appl. Phys. 117 044501 DOI: 10.1063/1.4906220
[36]
Baena D, Glybovski B, del Risco P, Slobozhanyuk P, Belov A 2017 IEEE Trans. Anten. Propag. 65 4124 DOI: 10.1109/TAP.2017.2717964
[37]
Baena J, Risco J D, Slobozhanyuk A, Belov P 2015 Phys. Rev. B 92 245413 DOI: 10.1103/PhysRevB.92.245413
[38]
Abadi S, Behdad N 2016 IEEE Trans. Anten. Propag. 64 525 DOI: 10.1109/TAP.2015.2504999
[39]
Wu J L, Lin B Q, Da X Y 2016 Chin. Phys. B 25 088101 DOI: 10.1088/1674-1056/25/8/088101
[40]
Lin B, Wu J, Da X et al. 2017 Appl. Phys. A 123 43 DOI: 10.1007/s00339-016-0673-8
[41]
Jiang W, Wen W 2017 Opt. Express 25 3805 DOI: 10.1364/OE.25.003805
[42]
Zhang W, Li J Y, Xie J 2017 IEEE Trans. Anten. Propag. 65 5623 DOI: 10.1109/TAP.2017.2735459
[43]
Lin B, Guo J, Huang B, Fang L, Chu P 2018 Chin. Phys. B 27 054204 DOI: 10.1088/1674-1056/27/5/054204
[44]
Akgol O, Unal E, Altintas O et al. 2018 Optik 161 12 DOI: 10.1016/j.ijleo.2018.02.028
[1] Broadband asymmetric transmission for linearly and circularly polarization based on sand-clock structured metamaterial
Tao Fu(傅涛), Xing-Xing Liu(刘兴兴), Guo-Hua Wen(文国华), Tang-You Sun(孙堂友), Gong-Li Xiao(肖功利), and Hai-Ou Li(李海鸥). Chin. Phys. B, 2021, 30(1): 014201.
[2] Active metasurfaces for manipulatable terahertz technology
Jing-Yuan Wu(吴静远), Xiao-Feng Xu(徐晓峰), Lian-Fu Wei(韦联福). Chin. Phys. B, 2020, 29(9): 094202.
[3] Polarization conversion metasurface in terahertz region
Chen Zhou(周晨), Jiu-Sheng Li(李九生). Chin. Phys. B, 2020, 29(7): 078706.
[4] Terahertz polarization conversion and sensing with double-layer chiral metasurface
Zi-Yang Zhang(张子扬), Fei Fan(范飞), Teng-Fei Li(李腾飞), Yun-Yun Ji(冀允允), Sheng-Jiang Chang(常胜江). Chin. Phys. B, 2020, 29(7): 078707.
[5] Narrowband perfect terahertz absorber based on polar-dielectrics metasurface
Meng-Meng Zhao(赵萌萌), Shu-Fang Fu(付淑芳), Sheng Zhou(周胜), Yu-Ling Song(宋玉玲), Qiang Zhang(张强), Yong-Qi Yin(尹永琦), Yu-Tian Zhao(赵玉田), Hong Liang(梁红), Xuan-Zhang Wang(王选章). Chin. Phys. B, 2020, 29(5): 054210.
[6] Dynamically adjustable asymmetric transmission and polarization conversion for linearly polarized terahertz wave
Tong Li(李彤), Fang-Rong Hu(胡放荣), Yi-Xian Qian(钱义先), Jing Xiao(肖靖), Long-Hui Zhang(张隆辉), Wen-Tao Zhang(张文涛), Jia-Guang Han(韩家广). Chin. Phys. B, 2020, 29(2): 024203.
[7] Pancharatnam-Berry metasurface for terahertz wave radar cross section reduction
Shao-He Li(李绍和), Jiu-Sheng Li(李九生). Chin. Phys. B, 2019, 28(9): 094210.
[8] Flexible broadband polarization converter based on metasurface at microwave band
Qi Wang(王奇), Xiangkun Kong(孔祥鲲), Xiangxi Yan(严祥熙), Yan Xu(徐岩), Shaobin Liu(刘少斌), Jinjun Mo(莫锦军), Xiaochun Liu(刘晓春). Chin. Phys. B, 2019, 28(7): 074205.
[9] Aperture efficiency and mode constituent analysis for OAM vortex beam generated by digital metasurface
Di Zhang(张迪), Xiangyu Cao(曹祥玉), Huanhuan Yang(杨欢欢), Jun Gao(高军), Shiqi Lv(吕世奇). Chin. Phys. B, 2019, 28(3): 034204.
[10] Manipulation of acoustic wavefront by transmissive metasurface based on pentamode metamaterials
Ying Liu(刘颖), Yi-Feng Li(李义丰), Xiao-Zhou Liu(刘晓宙). Chin. Phys. B, 2019, 28(2): 024301.
[11] Selection of right-circular-polarized harmonics from p orbital of neon atom by two-color bicircular laser fields
Chang-Long Xia(夏昌龙), Yue-Yue Lan(兰悦跃), Qian-Qian Li(李倩倩), Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2019, 28(10): 103203.
[12] Ultra-thin circularly polarized lens antenna based on single-layered transparent metasurface
Kaiyue Liu(刘凯越), Guangming Wang(王光明), Tong Cai(蔡通), Wenlong Guo(郭文龙), Yaqiang Zhuang(庄亚强), Gang Liu(刘刚). Chin. Phys. B, 2018, 27(8): 084101.
[13] Wideband linear-to-circular polarization conversion realized by a transmissive anisotropic metasurface
Bao-Qin Lin(林宝勤), Jian-Xin Guo(郭建新), Bai-Gang Huang(黄百钢), Lin-Bo Fang(方林波), Peng Chu(储鹏), Xiang-Wen Liu(刘湘雯). Chin. Phys. B, 2018, 27(5): 054204.
[14] Double-rod metasurface for mid-infrared polarization conversion
Yang Pu(蒲洋), Yi Luo(罗意), Lu Liu(刘路), De He(何德), Hongyan Xu(徐洪艳), Hongwei Jing(景洪伟), Yadong Jiang(蒋亚东), Zhijun Liu(刘志军). Chin. Phys. B, 2018, 27(2): 024202.
[15] Bidirectional asymmetric acoustic focusing with two flat acoustic metasurfaces
Di-Chao Chen(陈帝超), Xing-Feng Zhu(朱兴凤), Qi Wei(魏琦), Da-Jian Wu(吴大建). Chin. Phys. B, 2018, 27(12): 124302.
[1] YUAN SONG-LIU. TEMPERATURE-DEPENDENT ANISOTROPY IN La1.86Sr0.14CuO4[J]. Acta Phys. Sin. (Overseas Edition), 1995, 4(10): 766 -773 .
[2] WU JIN-WEI, GUO GUANG-CAN. SUPERPOSITION OF COHERENT STATES IN KERR MEDIUM[J]. Acta Phys. Sin. (Overseas Edition), 1996, 5(10): 764 -768 .
[3] Liu Li, Su Xiong-Rui. Enhanced optical nonlinear absorption of graded Au--TiO2 composite films[J]. Chin. Phys. B, 2008, 17(6): 2170 -2174 .
[4] Tan Fang, Peng Liang-You, Gong Qi-Huang. Ionization of atoms by chirped attosecond pulses[J]. Chin. Phys. B, 2009, 18(11): 4807 -4814 .
[5] Cai Jun, Wang Li-Ming, Qiao Hao-Xue. Phase-dependent quantum interference between different pathways in bichromatic harmonic generation[J]. Chin. Phys. B, 2009, 18(4): 1458 -1462 .
[6] Zheng Lang, Tang Yi. Interactions between optical bullets with different velocities in the three-dimensional cubic-quintic complex Ginzburg-Landau equation[J]. Chin. Phys. B, 2010, 19(4): 44209 -044209 .
[7] Li Yi-De, Hao Qing-Hai, Cao Qi-Long, Liu Chang-Song. Diffusion activation energy versus the favourable energy in two-order-parameter model:A molecular dynamics study of liquid Al[J]. Chin. Phys. B, 2010, 19(8): 86104 -086104 .
[8] Wang Sheng-Jun, Wu Zhi-Xi, Dong Hai-Rong, Chen Guan-Rong. Undetermination of the relation between network synchronizability and betweenness centrality[J]. Chin. Phys. B, 2011, 20(4): 48903 -048903 .
[9] Wu Xue-Dong, Wang Yao-Nan, Liu Wei-Ting, Zhu Zhi-Yu. Generalized unscented Kalman filtering based radial basis function neural network for the prediction of ground radioactivity time series with missing data[J]. Chin. Phys. B, 2011, 20(6): 69201 -069201 .
[10] Zhai Liang-Jun, Zheng Yu-Jun, Ding Shi-Liang. Dynamics of vibrational chaos and entanglement in triatomic molecules: Lie algebraic model[J]. Chin. Phys. B, 2012, 21(7): 70503 -070503 .