Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 104209    DOI: 10.1088/1674-1056/ab9de2
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Photoluminescence changes of C70 nanotubes induced by laser irradiation

Han-Da Wang(王汉达)1, De-Di Liu(刘德弟)1,†, Yang-Yang He(何洋洋)1, Hong-Sheng Jia(贾洪声)3,‡, Ran Liu(刘然)2, Bo Liu(刘波)2, Nai-Sen Yu(于乃森)1,4 , and Zhen-Yi Zhang(张振翼)1
1 School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, China
2 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China
3 Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Siping 136000, China
4 Guangxi Key Laboratory of Precision Navigation Technology and Application, Guilin University of Electronic Technology, Guilin 541004, China
Abstract  

C70 nanotubes with a fcc lattice structure are polymerized through being irradiated by lasers with a wavelength of 514.5 nm at various power values. Raman spectra and photoluminescence (PL) spectra are employed to characterize the polymeric phases of the laser treated samples, showing that the disordered C70 oligomers are formed in the C70 nanotubes irradiated by such strong green lasers. Comparative studies further indicate that intermolecular bonds are formed between C70 molecules on the surface of nanotubes, which are similar to those formed under high pressure and high temperature (HPHT) conditions. And the content of intermolecular bonds increases obviously with the laser power increasing.

Keywords:  fullerene      polymerization      photoluminescence      nanocrystals  
Received:  20 January 2020      Revised:  27 April 2020      Accepted manuscript online:  18 June 2020
PACS:  42.70.Gi (Light-sensitive materials)  
  68.35.Rh (Phase transitions and critical phenomena)  
  78.55.Hx (Other solid inorganic materials)  
  78.30.Na (Fullerenes and related materials)  
Corresponding Authors:  Corresponding author. E-mail: liudedi@dlnu.edu.cn Corresponding author. E-mail: iop84041@163.com   
About author: 
†Corresponding author. E-mail: liudedi@dlnu.edu.cn
‡Corresponding author. E-mail: iop84041@163.com
* Project supported by the Natural Science Foundation of Liaoning Province, China (Grant Nos. 20180550100 and XLYC1807004), the National Natural Science Foundation of China (Grant No. 51772041), the Program for Dalian Excellent Talents, China (Grant No. 2017RQ148), and the Open Project of the Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, China (Grant No. 20162016003).

Cite this article: 

Han-Da Wang(王汉达), De-Di Liu(刘德弟)†, Yang-Yang He(何洋洋), Hong-Sheng Jia(贾洪声)‡, Ran Liu(刘然), Bo Liu(刘波), Nai-Sen Yu(于乃森), and Zhen-Yi Zhang(张振翼) Photoluminescence changes of C70 nanotubes induced by laser irradiation 2020 Chin. Phys. B 29 104209

Fig. 1.  

(a) SEM image with insert showing XRD pattern of as-grown C70 nanotubes and (b) Raman spectrum with 830-nm laser used as excitation line of as-grown C70 nanotubes.

Fig. 2.  

PL spectrum of as-grown C70 nanotubes irradiated by 514.5-nm laser with power 0.2 mW, with insert showing UV-Vis absorption spectrum of as-grown C70 nanotubes, and red and blue dashed lines denoting two fitted peaks of the PL band of C70 nanotubes.

Fig. 3.  

PL spectra of pristine C70 nanotubes irradiated by 514.5-nm laser with 0.2 mW, 1 mW, 2 mW, 5 mW, and 10 mW, respectively.

Fig. 4.  

(a) Laser power-dependent center positions of PL peak and (b) laser-power-dependent intensity ratio of peak B to peak A of C70 nanocrystals.

Fig. 5.  

Raman spectra of C70 nanotubes irradiated by (a) 514.5-nm laser and (b) 830-nm laser, respectively. Lasers with various powers are employed for comparison, and characterized $ {{\rm{E}}}_{2}^{^{\prime} } $ Raman peak for samples irradiated with different values of laser power are shown in inserts.

Fig. 6.  

(a) PL spectra of C70 nanotubes irradiated by 514.5-nm laser with power of 10 mW (black) and C70 nanotubes treated under 2.0 GPa, 700 K (red). PL spectrum of the laser irradiated sample is fitted to two peaks: Peak A (red dashed curve) and peak B (green dashed curve). (b) Raman spectra of C70 nanotubes irradiated by laser with 10-mW power and HPHT treated under 2.0 GPa, 700 K.

[1]
Ruoff R S, Ruoff A L 1991 Nature 350 663 DOI: 10.1038/350663b0
[2]
Briseno A L, Mannsfeld S C B, Ling M M, Liu S, Tseng R J, Reese C, Roberts M E, Yang Y, Wudl F, Bao Z 2006 Nature 444 913 DOI: 10.1038/nature05427
[3]
Wang L, Liu B B, Liu D D, Yao M G, Hou Y Y, Yu S D, Cui T, Li D M, Zou G T, Iwasiewicz A, Sundqvist B 2006 Adv. Mater. 18 1883 DOI: 10.1002/(ISSN)1521-4095
[4]
Geng J F, Zhou W Z, Skelton P, Yue W B, Kinloch I A, Windle A H, Johnson B F G 2008 J. Am. Chem. Soc. 130 2527 DOI: 10.1021/ja076392s
[5]
Shin H S, Yoon S M, Tang Q, Chon B, Joo T, Choi H C 2008 Angew. Chem. Int. Ed. 47 693 DOI: 10.1002/(ISSN)1521-3773
[6]
Wang L, Liu B B, Li H, Yang W G, Ding Y, Sinogeikin S V, Meng Y, Liu Z X, Zeng X C, Mao W L 2012 Science 337 825 DOI: 10.1126/science.1220522
[7]
Lu G H, Li L G, Yang X N 2008 Small 4 601 DOI: 10.1002/(ISSN)1613-6829
[8]
Wang L, Liu B B, Yu S D, Yao M G, Liu D D, Hou Y Y, Cui T, Zou G T 2006 Chem. Mater. 18 4190 DOI: 10.1021/cm060997q
[9]
Barzegar H R, Larsen C, Edman L, Wågberg T 2013 Part. Part. Syst. Char. 30 715 DOI: 10.1002/ppsc.201300016
[10]
Barzegar H R, Hu G Z, Larsen C, Edman L, Wågberg T 2014 Carbon 73 34 DOI: 10.1016/j.carbon.2014.02.028
[11]
Liu D D, Cui W, Yu N S, Liu R, Liu D P, Xu Y B, Quan C S, Liu B, Li Q J, Liu B B 2014 CrystEngComm 16 3284 DOI: 10.1039/c3ce42201a
[12]
Sundqvist B 1999 Adv. Phys. 48 1 DOI: 10.1080/000187399243464
[13]
Yamanaka S, Kubo A, Inumaru K, Komaguchi K, Kini N S, Inoue T, Irifune T 2006 Phys. Rev. Lett. 96 76602 DOI: 10.1103/PhysRevLett.96.076602
[14]
Yao M G, Pischedda V, Mezouar M, Sundqvist B, Wagberg T, Debord R, San M A 2011 Phys. Rev B 84 144106 DOI: 10.1103/PhysRevB.84.144106
[15]
Liu D D, Yao M G, Li Q J, Cui W, Zou B, Cui T, Liu B B, Sundqvist B, Wagberg T 2011 CrystEngComm 13 3600 DOI: 10.1039/c0ce00953a
[16]
Liu D D, Liu B B, Sundqvist B, Dong D P, Li Z H, Liu D P 2016 Sci. Rep. 6 38470 DOI: 10.1038/srep38470
[17]
Menon M, Rao A M, Subbaswamy K R, Eklund P C 1995 Phys. Rev. B 51 800 DOI: 10.1103/PhysRevB.51.800
[18]
Eklund P C, Rao A M, Zhou P, Wang Y, Holden J M 1995 Thin Solid Films 257 185 DOI: 10.1016/0040-6090(94)05704-4
[19]
Rao A M, Menon M, Wang K A, Eklund P C, Subbaswam K R, Cornett D S, Duncan M A, Amster I J 1994 Chem. Phys. Lett. 224 106 DOI: 10.1016/0009-2614(94)00497-8
[20]
Liu D D, Yao M G, Wang L, Li Q J, Cui W, Liu B, Liu R, Zou B, Cui T, Liu B B, Liu J, Sundqvist B, Wagberg T 2011 J. Phys. Chem. C 115 8918 DOI: 10.1021/jp2005666
[21]
Christidess C, Thomas I M, Dennis T J S, Prassides K 1993 Europhys. Lett. 22 611 DOI: 10.1209/0295-5075/22/8/009
[22]
Dresselhaus M S, Dresselhaus G, Satio R 1992 Phys. Rev. B 45 6234 DOI: 10.1103/PhysRevB.45.6234
[23]
Jishi R A, Mirie R M, Dresselhaus M S, Dresselhaus G, Eklaud P C 1993 Phys. Rev. B 48 5634 DOI: 10.1103/PhysRevB.48.5634
[24]
Ichida M, Tanaka S, Nakamura A 2000 J. Lumin. 87 785 DOI: 10.1016/S0022-2313(99)00404-4
[25]
Capozzi V, Perna G 2007 Thin Solid Films 515 7247 DOI: 10.1016/j.tsf.2007.02.086
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[8] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[9] Substrate tuned reconstructed polymerization of naphthalocyanine on Ag(110)
Qi Zheng(郑琦), Li Huang(黄立), Deliang Bao(包德亮), Rongting Wu(武荣庭), Yan Li(李彦), Xiao Lin(林晓), Shixuan Du(杜世萱), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(1): 018202.
[10] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[11] Optical spectroscopy study of damage evolution in 6H-SiC by H$_{2}^{ + }$ implantation
Yong Wang(王勇), Qing Liao(廖庆), Ming Liu(刘茗), Peng-Fei Zheng(郑鹏飞), Xinyu Gao(高新宇), Zheng Jia(贾政), Shuai Xu(徐帅), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2021, 30(5): 056106.
[12] Combined effects of carrier scattering and Coulomb screening on photoluminescence in InGaN/GaN quantum well structure with high In content
Rui Li(李睿), Ming-Sheng Xu(徐明升), Peng Wang(汪鹏), Cheng-Xin Wang(王成新), Shang-Da Qu(屈尚达), Kai-Ju Shi(时凯居), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2021, 30(4): 047801.
[13] Characterization, spectroscopic investigation of defects by positron annihilation, and possible application of synthesized PbO nanoparticles
Sk Irsad Ali, Anjan Das, Apoorva Agrawal, Shubharaj Mukherjee, Maudud Ahmed, P M G Nambissan, Samiran Mandal, and Atis Chandra Mandal. Chin. Phys. B, 2021, 30(2): 026103.
[14] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[15] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
No Suggested Reading articles found!