Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 090401    DOI: 10.1088/1674-1056/ab9c05
GENERAL Prev   Next  

Fabrication and performance evaluation of GaN thermal neutron detectors with bm6LiF conversion layer

Zhifu Zhu(朱志甫)1,2,3, Zhijia Sun(孙志嘉)2, Jijun Zou(邹继军)3, Bin Tang(唐彬)2, Qinglei Xiu(修青磊)2, Renbo Wang(王仁波)3, Jinhui Qu(瞿金辉)3, Wenjuan Deng(邓文娟)3, Shaotang Wang(王少堂)3, Junbo Peng(彭俊波)3, Zhidong Wang(王志栋)3, Bin Tang(汤彬)3, Haiping Zhang(张海平)4
1 State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China;
2 State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
3 Engineering Research Center of Nuclear Technology Application(East China University of Technology), Ministry of Education, Nanchang 330013, China;
4 CGN Begood Technology Co., Ltd., Nanchang 330013, China
Abstract  A GaN-based pin neutron detector with a 6LiF conversion layer was fabricated, and can be used to detect thermal neutrons. Measurement of the electrical characteristic of the GaN-based pin neutron detector showed that the reverse leakage current of the neutron detector was reduced significantly after deposition of a 6LiF conversion layer on the detector surface. The thermal neutrons used in this experiment were obtained from an 241Am-Be fast neutron source after being moderated by 100-mm-thick high-density polyethylene. The experimental results show that the detector with 16.9-μm thick 6LiF achieved a maximum neutron detection efficiency of 1.9% at a reverse bias of 0 V, which is less than the theoretical detection efficiency of 4.1% calculated for our GaN neutron detectors.
Keywords:  thermal neutron      GaN      detector      6LiF  
Received:  03 May 2020      Revised:  25 May 2020      Published:  05 September 2020
PACS:  04.80.Nn (Gravitational wave detectors and experiments)  
  29.40.-n (Radiation detectors)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.61.Ey (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61964001 and 61961001), the State Key Laboratory of Particle Detection and Electronics (Grant No. SKLPDE-KF-2019), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20192BAB207033 and 20181BAB202026), the Foundation of State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology) (Grant No. NRE1515), and the Jiangxi Provincial Postdoctoral Science Foundation, China (Grant No. 2018KY31).
Corresponding Authors:  Zhijia Sun, Jijun Zou     E-mail:  sunzj@ihep.ac.cn;jjzou@ecit.cn

Cite this article: 

Zhifu Zhu(朱志甫), Zhijia Sun(孙志嘉), Jijun Zou(邹继军), Bin Tang(唐彬), Qinglei Xiu(修青磊), Renbo Wang(王仁波), Jinhui Qu(瞿金辉), Wenjuan Deng(邓文娟), Shaotang Wang(王少堂), Junbo Peng(彭俊波), Zhidong Wang(王志栋), Bin Tang(汤彬), Haiping Zhang(张海平) Fabrication and performance evaluation of GaN thermal neutron detectors with bm6LiF conversion layer 2020 Chin. Phys. B 29 090401

[1] Shur M S 1998 Solid State Electron. 42 2131
[2] Wu Y F, Keller B P, Keller S, Kapolnek D, Kozodoy P, Denbaars S P and Mishra U K 1996 Appl. Phys. Lett. 69 1438
[3] Asif Khan M, Kuznia J N, Olson D T, Schaff W J, Burm J W and Shur M S 1994 Appl. Phys. Lett. 65 1121
[4] Nakamura S, Mukai T and Senoh M 1994 Appl. Phys. Lett. 64 1687
[5] Northrup J E and Neugebauer J 1996 Phys. Rev. B 53 R10477
[6] Zhu Z F, Zou J J, Tang B, Wang Z D, Peng X C, Liang H W, Zhang H Q and Du G T 2018 Nucl. Instrum. Method A 902 9
[7] Zhu Z F, Zhang H Q, Liang H W, Tang B, Peng X C, Liu J X, Yang C, Xia X C, Tao P C, Shen R S, Zou J J and Du G T 2018 Nucl. Instrum. Method A 893 39
[8] Taheri A and Sheidaiy M 2015 J. Inst. 10 05003
[9] Geng X L, Xia X C, Huang H L, Sun Z H, Zhang H Q, Cui X Z, Liang X H and Liang H W 2020 Chin. Phys. B 29 027201
[10] Melton A G, Burgett E, Xu T, Hertel N and Ferguson I T 2012 Phys. Status Solidi 9 957
[11] Wang J H, Mulligan P, Brillson L and Cao L R 2015 Appl. Phys. Rev. 2 031102
[12] Li Y, Shi Z F, Li X J and Shan C X 2019 Chin. Phys. B 28 017803
[13] Wang W F, Wang J F, Zhang Y M, Li T K, Xiong R and Xu K 2020 Chin. Phys. B 29 047305
[14] Šagátová A, Zatko B, Sedlackova K, Necas V, Dubecky F, Bohacek P and Chodak I 2013 Nucl. Instrum. Method A 8 03016
[15] Polyakov A Y, Smirnov N B, Shchemerov I V, Gogova D, Tarelkin S A, Lee I H and Pearton S J 2018 ECS. J. Solid State Sci. 7 260
[1] A MOVPE method for improving InGaN growth quality by pre-introducing TMIn
Zi-Kun Cao(曹子坤), De-Gang Zhao(赵德刚), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Feng Liang(梁锋), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2021, 30(1): 018103.
[2] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[3] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[4] Temperature-dependent barrier height inhomogeneities in PTB7:PC71BM-based organic solar cells
Brahim Ait Ali, Reda Moubah, Abdelkader Boulezhar, Hassan Lassri. Chin. Phys. B, 2020, 29(9): 098801.
[5] Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087304.
[6] Theoretical analysis for AlGaN avalanche photodiodes with mesa and field plate structure
Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Qing Cai(蔡青), Yan-Li liu(刘燕丽), Yu-Jie Wang(王玉杰). Chin. Phys. B, 2020, 29(8): 088502.
[7] Analysis of stress-induced inhomogeneous electroluminescence in GaN-based green LEDs grown on mesh-patterned Si (111) substrates with n-type AlGaN layer
Quan-Jiang Lv(吕全江), Yi-Hong Zhang(张一鸿), Chang-Da Zheng(郑畅达), Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Jun-Lin Liu(刘军林). Chin. Phys. B, 2020, 29(8): 087801.
[8] Trap analysis of composite 2D-3D channel in AlGaN/GaN/graded-AlGaN: Si/GaN: C multi-heterostructure at different temperatures
Sheng Hu(胡晟), Ling Yang(杨凌), Min-Han Mi(宓珉瀚), Bin Hou(侯斌), Sheng Liu(刘晟), Meng Zhang(张濛), Mei Wu(武玫), Qing Zhu(朱青), Sheng Wu(武盛), Yang Lu(卢阳), Jie-Jie Zhu(祝杰杰), Xiao-Wei Zhou(周小伟), Ling Lv(吕玲), Xiao-Hua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087305.
[9] Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer
Shixin Hou(侯世欣), Biao Shi(石标), Pengyang Wang(王鹏阳), Yucheng Li(李玉成), Jie Zhang(张杰), Peirun Chen(陈沛润), Bingbing Chen(陈兵兵), Fuhua Hou(侯福华), Qian Huang(黄茜), Yi Ding(丁毅), Yuelong Li(李跃龙), Dekun Zhang(张德坤), Shengzhi Xu(许盛之), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹). Chin. Phys. B, 2020, 29(7): 078801.
[10] Experimental evaluation of interface states during time-dependent dielectric breakdown of GaN-based MIS-HEMTs with LPCVD-SiNx gate dielectric
Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Tao-Tao Que(阙陶陶), Qiu-Ling Qiu(丘秋凌), Liang He(何亮), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(6): 067203.
[11] High-performance midwavelength infrared detectors based on InAsSb nBn design
Xuan Zhang(张璇), Qing-Xuan Jia(贾庆轩), Ju Sun(孙矩), Dong-Wei Jiang(蒋洞微), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2020, 29(6): 068501.
[12] Critical behavior in the layered organic-inorganic hybrid (CH3NH3)2CuCl4
Tina Raoufi, Yinina Ma(马怡妮娜), Young Sun(孙阳). Chin. Phys. B, 2020, 29(6): 067503.
[13] Ultraviolet irradiation dosimeter based on persistent photoconductivity effect of ZnO
Chao-Jun Wang(王朝骏), Xun Yang(杨珣), Jin-Hao Zang(臧金浩), Yan-Cheng Chen(陈彦成), Chao-Nan Lin(林超男), Zhong-Xia Liu(刘忠侠), Chong-Xin Shan(单崇新). Chin. Phys. B, 2020, 29(5): 058504.
[14] High performance InAlN/GaN high electron mobility transistors for low voltage applications
Minhan Mi(宓珉瀚), Meng Zhang(张濛), Sheng Wu(武盛), Ling Yang(杨凌), Bin Hou(侯斌), Yuwei Zhou(周雨威), Lixin Guo(郭立新), Xiaohua Ma(马晓华), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(5): 057307.
[15] Application of graphene vertical field effect to regulation of organic light-emitting transistors
Hang Song(宋航), Hao Wu(吴昊), Hai-Yang Lu(陆海阳), Zhi-Hao Yang(杨志浩), Long Ba(巴龙). Chin. Phys. B, 2020, 29(5): 057401.
No Suggested Reading articles found!