Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 090401    DOI: 10.1088/1674-1056/ab9c05
GENERAL Prev   Next  

Fabrication and performance evaluation of GaN thermal neutron detectors with bm6LiF conversion layer

Zhifu Zhu(朱志甫)1,2,3, Zhijia Sun(孙志嘉)2, Jijun Zou(邹继军)3, Bin Tang(唐彬)2, Qinglei Xiu(修青磊)2, Renbo Wang(王仁波)3, Jinhui Qu(瞿金辉)3, Wenjuan Deng(邓文娟)3, Shaotang Wang(王少堂)3, Junbo Peng(彭俊波)3, Zhidong Wang(王志栋)3, Bin Tang(汤彬)3, Haiping Zhang(张海平)4
1 State Key Laboratory Breeding Base of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China;
2 State Key Laboratory of Particle Detection and Electronics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
3 Engineering Research Center of Nuclear Technology Application(East China University of Technology), Ministry of Education, Nanchang 330013, China;
4 CGN Begood Technology Co., Ltd., Nanchang 330013, China
Abstract  A GaN-based pin neutron detector with a 6LiF conversion layer was fabricated, and can be used to detect thermal neutrons. Measurement of the electrical characteristic of the GaN-based pin neutron detector showed that the reverse leakage current of the neutron detector was reduced significantly after deposition of a 6LiF conversion layer on the detector surface. The thermal neutrons used in this experiment were obtained from an 241Am-Be fast neutron source after being moderated by 100-mm-thick high-density polyethylene. The experimental results show that the detector with 16.9-μm thick 6LiF achieved a maximum neutron detection efficiency of 1.9% at a reverse bias of 0 V, which is less than the theoretical detection efficiency of 4.1% calculated for our GaN neutron detectors.
Keywords:  thermal neutron      GaN      detector      6LiF  
Received:  03 May 2020      Revised:  25 May 2020      Published:  05 September 2020
PACS:  04.80.Nn (Gravitational wave detectors and experiments)  
  29.40.-n (Radiation detectors)  
  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.61.Ey (III-V semiconductors)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61964001 and 61961001), the State Key Laboratory of Particle Detection and Electronics (Grant No. SKLPDE-KF-2019), the Natural Science Foundation of Jiangxi Province, China (Grant Nos. 20192BAB207033 and 20181BAB202026), the Foundation of State Key Laboratory Breeding Base of Nuclear Resources and Environment (East China Institute of Technology) (Grant No. NRE1515), and the Jiangxi Provincial Postdoctoral Science Foundation, China (Grant No. 2018KY31).
Corresponding Authors:  Zhijia Sun, Jijun Zou     E-mail:  sunzj@ihep.ac.cn;jjzou@ecit.cn

Cite this article: 

Zhifu Zhu(朱志甫), Zhijia Sun(孙志嘉), Jijun Zou(邹继军), Bin Tang(唐彬), Qinglei Xiu(修青磊), Renbo Wang(王仁波), Jinhui Qu(瞿金辉), Wenjuan Deng(邓文娟), Shaotang Wang(王少堂), Junbo Peng(彭俊波), Zhidong Wang(王志栋), Bin Tang(汤彬), Haiping Zhang(张海平) Fabrication and performance evaluation of GaN thermal neutron detectors with bm6LiF conversion layer 2020 Chin. Phys. B 29 090401

[1] Shur M S 1998 Solid State Electron. 42 2131
[2] Wu Y F, Keller B P, Keller S, Kapolnek D, Kozodoy P, Denbaars S P and Mishra U K 1996 Appl. Phys. Lett. 69 1438
[3] Asif Khan M, Kuznia J N, Olson D T, Schaff W J, Burm J W and Shur M S 1994 Appl. Phys. Lett. 65 1121
[4] Nakamura S, Mukai T and Senoh M 1994 Appl. Phys. Lett. 64 1687
[5] Northrup J E and Neugebauer J 1996 Phys. Rev. B 53 R10477
[6] Zhu Z F, Zou J J, Tang B, Wang Z D, Peng X C, Liang H W, Zhang H Q and Du G T 2018 Nucl. Instrum. Method A 902 9
[7] Zhu Z F, Zhang H Q, Liang H W, Tang B, Peng X C, Liu J X, Yang C, Xia X C, Tao P C, Shen R S, Zou J J and Du G T 2018 Nucl. Instrum. Method A 893 39
[8] Taheri A and Sheidaiy M 2015 J. Inst. 10 05003
[9] Geng X L, Xia X C, Huang H L, Sun Z H, Zhang H Q, Cui X Z, Liang X H and Liang H W 2020 Chin. Phys. B 29 027201
[10] Melton A G, Burgett E, Xu T, Hertel N and Ferguson I T 2012 Phys. Status Solidi 9 957
[11] Wang J H, Mulligan P, Brillson L and Cao L R 2015 Appl. Phys. Rev. 2 031102
[12] Li Y, Shi Z F, Li X J and Shan C X 2019 Chin. Phys. B 28 017803
[13] Wang W F, Wang J F, Zhang Y M, Li T K, Xiong R and Xu K 2020 Chin. Phys. B 29 047305
[14] Šagátová A, Zatko B, Sedlackova K, Necas V, Dubecky F, Bohacek P and Chodak I 2013 Nucl. Instrum. Method A 8 03016
[15] Polyakov A Y, Smirnov N B, Shchemerov I V, Gogova D, Tarelkin S A, Lee I H and Pearton S J 2018 ECS. J. Solid State Sci. 7 260
[1] High-performing silicon-based germanium Schottky photodetector with ITO transparent electrode
Zhiwei Huang(黄志伟), Shaoying Ke(柯少颖), Jinrong Zhou(周锦荣), Yimo Zhao(赵一默), Wei Huang(黄巍), Songyan Chen(陈松岩), and Cheng Li(李成). Chin. Phys. B, 2021, 30(3): 037303.
[2] Vertical GaN Shottky barrier diode with thermally stable TiN anode
Da-Ping Liu(刘大平), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Shao-Heng Cheng(成绍恒), and Qi-Liang Wang(王启亮). Chin. Phys. B, 2021, 30(3): 038101.
[3] Stability and optoelectronic property of low-dimensional organic tin bromide perovskites
J H Lei(雷军辉), Q Tang(汤琼), J He(何军), and M Q Cai(蔡孟秋). Chin. Phys. B, 2021, 30(3): 038102.
[4] Graphene/SrTiO3 interface-based UV photodetectors with high responsivity
Heng Yue(岳恒), Anqi Hu(胡安琪), Qiaoli Liu(刘巧莉), Huijun Tian(田慧军), Chengri Hu(胡成日), Xiansong Ren(任显松), Nianyu Chen(陈年域), Chen Ge(葛琛), Kuijuan Jin(金奎娟), and Xia Guo(郭霞). Chin. Phys. B, 2021, 30(3): 038502.
[5] Effective suppression of beta oscillation in Parkinsonian state via a noisy direct delayed feedback control scheme
Hai-Tao Yu(于海涛), Zi-Han Meng(孟紫寒), Chen Liu(刘晨), Jiang Wang(王江), and Jing Liu(刘静). Chin. Phys. B, 2021, 30(3): 038703.
[6] Influence of sub-bandgap illumination on space charge distribution in CdZnTe detector
Rongrong Guo(郭榕榕, Jinhai Lin(林金海), Lili Liu(刘莉莉), Shiwei Li(李世韦), Chen Wang(王尘), Feibin Xiong(熊飞兵), and Haijun Lin(林海军). Chin. Phys. B, 2021, 30(3): 036101.
[7] Analysis of the decrease of two-dimensional electron gas concentration in GaN-based HEMT caused by proton irradiation
Jin-Jin Tang(汤金金), Gui-Peng Liu(刘贵鹏), Jia-Yu Song(宋家毓), Gui-Juan Zhao(赵桂娟), and Jian-Hong Yang(杨建红). Chin. Phys. B, 2021, 30(2): 027303.
[8] Modeling, simulations, and optimizations of gallium oxide on gallium-nitride Schottky barrier diodes
Tao Fang(房涛), Ling-Qi Li(李灵琪), Guang-Rui Xia(夏光睿), and Hong-Yu Yu(于洪宇). Chin. Phys. B, 2021, 30(2): 027301.
[9] Performance analysis of GaN-based high-electron-mobility transistors with postpassivation plasma treatment
Xing-Ye Zhou(周幸叶), Xin Tan(谭鑫), Yuan-Jie Lv(吕元杰), Guo-Dong Gu(顾国栋), Zhi-Rong Zhang(张志荣), Yan-Min Guo(郭艳敏), Zhi-Hong Feng(冯志红), and Shu-Jun Cai(蔡树军). Chin. Phys. B, 2021, 30(2): 028502.
[10] Continuous-wave operation of InAs/InP quantum dot tunable external-cavity laser grown by metal-organic chemical vapor deposition
Yan Wang(王岩), Shuai Luo(罗帅), Haiming Ji(季海铭), Di Qu(曲迪), and Yidong Huang(黄翊东). Chin. Phys. B, 2021, 30(1): 018106.
[11] A MOVPE method for improving InGaN growth quality by pre-introducing TMIn
Zi-Kun Cao(曹子坤), De-Gang Zhao(赵德刚), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Feng Liang(梁锋), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2021, 30(1): 018103.
[12] Temperature-dependent barrier height inhomogeneities in PTB7:PC71BM-based organic solar cells
Brahim Ait Ali, Reda Moubah, Abdelkader Boulezhar, Hassan Lassri. Chin. Phys. B, 2020, 29(9): 098801.
[13] High performance Cu2O film/ZnO nanowires self-powered photodetector by electrochemical deposition
Deshuang Guo(郭德双), Wei Li(李微), Dengkui Wang(王登魁), Bingheng Meng(孟兵恒), Dan Fang(房丹), Zhipeng Wei(魏志鹏). Chin. Phys. B, 2020, 29(9): 098504.
[14] Comparative study on characteristics of Si-based AlGaN/GaN recessed MIS-HEMTs with HfO2 and Al2O3 gate insulators
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Kai Liu(刘凯), Ang Li(李昂), Yun-Long He(何云龙), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(8): 087304.
[15] Theoretical analysis for AlGaN avalanche photodiodes with mesa and field plate structure
Ke-Xiu Dong(董可秀), Dun-Jun Chen(陈敦军), Qing Cai(蔡青), Yan-Li liu(刘燕丽), Yu-Jie Wang(王玉杰). Chin. Phys. B, 2020, 29(8): 088502.
No Suggested Reading articles found!