Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 096301    DOI: 10.1088/1674-1056/ab9bff

Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation

Wenyu Fang(方文玉)1, Wenbin Kang(康文斌)1,2, Jun Zhao(赵军)1,2, Pengcheng Zhang(张鹏程)1
1 School of Public Health and Management, Hubei University of Medicine, Shiyan 442000, China;
2 Hubei Biomedical Detection Sharing Platform in Water Source Area of South to North Water Diversion Project, Shiyan 442000, China
Abstract  By applying the first principles calculations combined with density functional theory (DFT), this study explored the optical properties, electronic structure, and structure stability of triangular borophene decorated chemically, B3X (X=F, Cl) in a systematical manner. As revealed from the results of formation energy, phonon dispersion, and molecular dynamics simulation study, all the borophene decorated chemically were superior and able to be fabricated. In the present study, triangular borophene was reported to be converted into Dirac-like materials when functionalized by F and Cl exhibiting narrow direct band gaps as 0.19 eV and 0.17 eV, separately. Significant light absorption was assessed in the visible light and ultraviolet region. According the mentioned findings, these two-dimensional (2D) materials show large and wide promising applications for future nanoelectronics and optoelectronics.
Keywords:  triangular borophene      dirac material      electronic structure      first-principles calculation  
Received:  21 May 2020      Revised:  11 June 2020      Published:  05 September 2020
PACS: (First-principles theory)  
  73.22.-f (Electronic structure of nanoscale materials and related systems)  
  78.20.Bh (Theory, models, and numerical simulation)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11947006) and the Cultivating Project for Young Scholar at Hubei University of Medicine, China (Grant No. 2018QDJZR22).
Corresponding Authors:  Jun Zhao, Pengcheng Zhang     E-mail:;

Cite this article: 

Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程) Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation 2020 Chin. Phys. B 29 096301

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Van Noorden R 2006 Nature 442 228
[3] Luk'yanchuk I A and Kopelevich Y 2006 Phys. Rev. Lett. 97 256801
[4] Cao M S, Wang X X, Zhang M, Shu J C, Cao W Q, Yang H J, Fang X Y and Yuan J 2019 Adv. Funct. Mater. 29 1807398
[5] Fu N W, Ji C L, Yi L, Xin M Z, Xue J W, Yu F C, Jian L Chun L W, Ming L Z and Liang M M 2019 Chin. Phys. B 28 047101
[6] Yan F G and Yong L 2019 Chin. Phys. B 28 077104
[7] Karthikeyan J, Ranawat Y S, Murugan P, Kumar V 2018 Nanoscale 10 17198
[8] Yuan J H, Yu N N, Xue K H, Miao X S 2017 Appl. Surf. Sci. 409 85
[9] Hashimoto A, Suenaga K, Gloter A, Urita K and Iijima S 2004 Nature 430 870
[10] Zhu Y L, Yuan J H, Song Y Q, Wang S, Xue K H, Xu M, Cheng X M and Miao X S 2019 J. Mater. Sci. 54 11485
[11] Shih P H, Chiu Y H, Wu J Y, Shyu F L, Lin M F 2017 Sci. Rep. 7 40600
[12] Chaudhary R P, Saxena S and Shukla S 2016 Nanotechnology 27 495701
[13] Wu L, Wang J, Lu J, Liu D, Yang N, Huang H, Chu P K and Yu X F 2018 Small e1801405
[14] Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Angew. Chem. Int. Ed. Engl. 54 3112
[15] Wang X, Song J and Qu J 2019 Angew. Chem. Int. Ed. Engl. 58 1574
[16] Zhao Y, Li X, Liu J, Zhang C and Wang Q 2018 J. Phys. Chem. Lett. 9 1815
[17] Carrete J, Gallego L J and Mingo N 2017 J. Phys. Chem. Lett. 8 1375
[18] Tang W, Sun M, Ren Q, Wang S and Yu J 2016 Appl. Surf. Sci. 376 286
[19] Yuan J, Xie Q, Yu N and Wang J 2017 Appl. Surf. Sci. 394 625
[20] Wu R, Drozdov I K, Eltinge S, Zahl P, Ismail-Beigi S, Bozovic I and Gozar A 2019 Nat. Nanotechnol. 14 44
[21] Sheng S, Wu J B, Cong X, Zhong Q, Li W, Hu W, Gou J, Cheng P, Tan P H, Chen L and Wu K 2019 ACS Nano 13 4133
[22] Tang H and Ismail-Beigi S 2007 Phys. Rev. Lett. 99 115501
[23] Qiu G, Xiao Q, Hu Y, Qin W, Wang D 2004 J. Colloid Interface Sci. 270 127
[24] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[25] Krukau A V, Vydrov O A, Izmaylov A F and Scuseria G E 2006 J. Chem. Phys. 125 224106
[26] Song Y Q, Yuan J H, Li L H, Xu M, Wang J F, Xue K H, Miao X S 2019 Nanoscale 11 1131
[27] Zhen-Ye Z, Si-Qi W and Yan-Ming F 2016 Chin. Phys. Lett. 33 026302
[28] Yuan J, Yu N, Xue K and Miao X 2017 RSC Adv. 7 8654
[29] Fan M, Wen Y, Ye D, Jin Z, Zhao P, Chen D, Lu X, He Q 2019 Adv. Healthc. Mater. 8 e1900157
[30] Zhao J, Li Y and Ma J 2016 Nanoscale 8 9657
[31] Fang W Y, Li P A, Yuan J H, Xue K H and Wang J F 2020 J. Electron. Mater. 49 959
[32] Yu Y, Chen C L, Zhao G D, Zheng X L and Zhu X H 2014 Chin. Phys. Lett. 31 106301
[33] Peng R, Ma Y, He Z, Huang B, Kou L and Dai Y 2019 Nano Lett. 19 1227
[34] Lee C, Wei X, Kysar J W and Hone J 2008 Science 321 385
[35] Castellanos-Gomez A, Poot M, Steele G A, Van Der Zant H S, Agrait N and Rubio-Bollinger G 2012 Adv. Mater. 24 772
[36] Li L and Yang J 2017 Nanotechnology 28 475701
[37] Li Y, Yu C, Gan Y, Kong Y, Jiang P, Zou D F, Li P, Yu X F, Wu R, Zhao H, Gao C F and Li J 2019 Nanotechnology 30 335703
[38] Liu L, Zhang J, Zhao J and Liu F 2012 Nanoscale 4 5910
[39] Kang J, Sahin H and Peeters F M 2015 Phys. Chem. Chem. Phys. 17 27742
[40] Zhang D, Xiong Y, Cheng J, Chai J, Liu T, Ba X, Ullah S, Zheng G, Yan M and Cao M 2020 Sci. Bull. 65 138
[41] Hua C, Sheng F, Hu Q, Xu Z A, Lu Y and Zheng Y 2018 J. Phys. Chem. Lett. 9 6695
[42] Feng S Q, Li J Y and Cheng X L 2015 Chin. Phys. Lett. 32 036301
[43] Weick G, Woollacott C, Barnes W L, Hess O and Mariani E 2013 Phys. Rev. Lett. 110 106801
[44] Zhang Y, Kang J, Zheng F, Gao P F, Zhang S L and Wang L W 2019 J. Phys. Chem. Lett. 10 6656
[45] Xu L C, Du A and Kou L 2016 Phys. Chem. Chem. Phys. 18 27284
[46] Fang W Y, Zhang P C, Zhao J and Kang W B 2020 Acta Phys. Sin. 69 056301 (in Chinese)
[47] Wang Y F and Li X W 2018 Acta Phys. Sin. 67 116301 (in Chinese)
[48] Mogulkoc A, Mogulkoc Y, Kecik D and Durgun E 2018 Phys. Chem. Chem. Phys. 20 21043
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[3] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[4] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[5] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[6] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[7] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[8] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[9] Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation
Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明). Chin. Phys. B, 2020, 29(8): 087103.
[10] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[11] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[12] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[13] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[14] Surface for methane combustion: O(3P)+CH4→OH+CH3
Ya Peng(彭亚), Zhong-An Jiang(蒋仲安), Ju-Shi Chen(陈举师). Chin. Phys. B, 2020, 29(7): 073401.
[15] Structural, electronic, and magnetic properties of quaternary Heusler CrZrCoZ compounds: A first-principles study
Xiao-Ping Wei(魏小平), Tie-Yi Cao(曹铁义), Xiao-Wei Sun(孙小伟), Qiang Gao(高强), Peifeng Gao(高配峰), Zhi-Lei Gao(高治磊), Xiao-Ma Tao(陶小马). Chin. Phys. B, 2020, 29(7): 077105.
No Suggested Reading articles found!