Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 086502    DOI: 10.1088/1674-1056/ab99af
Special Issue: SPECIAL TOPIC — Phononics and phonon engineering
SPECIAL TOPIC—Phononics and phonon engineering Prev   Next  

Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering

Heng-Yu Yang(杨恒玉)1,2, Ya-Li Chen(陈亚利)3, Wu-Xing Zhou(周五星)1,2, Guo-Feng Xie(谢国锋)1,2, Ning Xu(徐宁)4,2
1 School of Materials Science and Engineering, Hunan University of Science and Technology, Xiangtan 411201, China;
2 Hunan Provincial Key Laboratory of Advanced Materials for New Energy Storage and Conversion, Xiangtan 411201, China;
3 School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China;
4 Deparment of Physics, Yancheng Institute of Technology, Yancheng 224051, China

The ultra-low thermal conductivity of roughened silicon nanowires (SiNWs) can not be explained by the classical phonon-surface scattering mechanism. Although there have been several efforts at developing theories of phonon-surface scattering to interpret it, but the underlying reason is still debatable. We consider that the bond order loss and correlative bond hardening on the surface of roughened SiNWs will deeply influence the thermal transport because of their ultra-high surface-to-volume ratio. By combining this mechanism with the phonon Boltzmann transport equation, we explicate that the suppression of high-frequency phonons results in the obvious reduction of thermal conductivity of roughened SiNWs. Moreover, we verify that the roughness amplitude has more remarkable influence on thermal conductivity of SiNWs than the roughness correlation length, and the surface-to-volume ratio is a nearly universal gauge for thermal conductivity of roughened SiNWs.

Keywords:  thermal conductivity      silicon nanowires      bond order imperfections      phonon-surface scattering  
Received:  31 March 2020      Revised:  04 June 2020      Published:  05 August 2020
PACS:  65.80.-g (Thermal properties of small particles, nanocrystals, nanotubes, and other related systems)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  

Project supported by the National Natural Science Foundation of China (Grant No. 11874145).

Corresponding Authors:  Guo-Feng Xie, Guo-Feng Xie     E-mail:;

Cite this article: 

Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁) Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering 2020 Chin. Phys. B 29 086502

[1] Vineis C J, Shakouri A, Majumdar A and Kanatzidis M G 2010 Adv. Mater. 22 3970
[2] Lee J, Lee W, Lim J, Yu Y, Kong Q, Urban J J and Yang P 2016 Nano Lett. 16 4133
[3] Balandin A A 2011 Nat. Mater. 10 569
[4] Zhu X L, Liu P F, Zhang J, Zhang P, Zhou W X, Xie G F and Wang B T 2019 Nanoscale 11 19923
[5] Ding Z D, An M, Mo S Q, Yu X X, Jin Z L, Liao Y X, Esfarjani K, Lü J T, Shiomi J and Yang N 2019 J. Mater. Chem. A. 7 2114
[6] Tang L P, Li Q Z, Zhang C X, Ning F, Zhou W X, Tang L M and Chen K Q 2019 J. Magn. Magn. Mater. 488 165354
[7] Ouyang T, Jiang E, Tang C, Li J, He C and Zhong J 2018 J. Mater. Chem. A. 6 21532
[8] Zeng Y J, Wu D, Cao X H, Zhou W X, Tang L M and Chen K Q 2020 Adv. Funct. Mater. 30 1903873
[9] Xiao H, Cao W, Ouyang T, Xu X, Ding Y and Zhong J 2018 Appl. Phys. Lett. 112 233107
[10] Wu D, Cao X H, Chen S Z, Tang L M, Feng Y X, Chen K Q and Zhou W X 2019 J. Mater. Chem. A 7 19037
[11] Zhu X L, Liu P F, Xie G F, Zhou W X, Wang B T and Zhang G 2019 Nanomaterials 9 597
[12] Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121
[13] Cao B Y, Zou J H, Hu G J and Cao G X 2018 Appl. Phys. Lett. 112 041603
[14] Yang J K, Yang Y, Waltermire S W, Wu X X, Zhang H T, Gutu T, Jiang T F, Chen Y F, Zinn A A, Prasher R, Xu T T and Li D Y 2012 Nat. Nanotechnol. 7 91
[15] Chen X K, Liu J, Xie Z X, Zhang Y, Deng Y X and Chen K Q 2018 Appl. Phys. Lett. 113 121906
[16] Wang H, Hu S, Takahashi K, Zhang X, Takamatsu H and Chen J 2017 Nat. Commun. 8 15843
[17] Li D, Gao J, Cheng P, He J, Yin Y, Hu Y, Chen L, Cheng Y and Zhao J 2020 Adv. Funct. Mater. 30 1904349
[18] Zhou W X, Chen Y, Chen K Q, Xie G F, Wang T and Zhang G 2020 Adv. Funct. Mater. 30 1903829
[19] Yin Y, Li D, Hu Y, Ding G, Zhou H and Zhang G 2020 Nanotechnology
[20] Chen X K and Chen K Q 2020 J. Phys.:Condens. Matter 32 153002
[21] Zhu X L, Liu P F, Xie G F and Wang B T 2019 Phys. Chem. Chem. Phys. 21 10931
[22] Hua Y C and Cao B Y 2018 J. Appl. Phys. 123 114304
[23] Xie Z X, Liu J Z, Yu X, Wang H B, Deng Y X, Li K M and Zhang Y 2015 J. Appl. Phys. 117 114308
[24] Xie Z X, Zhang Y, Yu X, Li K M and Chen Q 2014 J. Appl. Phys. 115 104309
[25] Xie G F, Ding D and Zhang G 2018 Adv. Phys. X 3 1480417
[26] Majumdar A 1993 J. Heat Transfer 115 7
[27] Nika D L, Cocemasov A I, Isacova C I, Balandin A A, Fomin V M and Schmidt O G 2012 Phys. Rev. B. 85 205439
[28] Nika D L, Askerov A S and Balandin A A 2012 Nano Lett. 12 3238
[29] Ziman J M 1960 Electrons and Phonons (Clarendon:Oxford) p. 35
[30] Dames C and Chen G 2004 J. Appl. Phys. 95 682
[31] Xie G F, Guo Y, Wei X L, Zhang K W, Sun L Z, Zhong J X and Zhang Y W 2014 Appl. Phys. Lett. 104 233901
[32] Aksamija Z and Knezevic I 2011 Appl. Phys. Lett. 98 141919
[33] Kazan M, Guisbiers G, Pereira S, Correia M R, Masri P, Bruyant A, Volz S and Royer P 2010 J. Appl. Phys. 107 083503
[34] Heron J S, Fournier T, Mingo N and Bourgeois O 2009 Nano Lett. 9 1861
[35] Li D Y, Wu Y Y, Kim P, Shi L, Yang P D and Majumdar A 2003 Appl. Phys. Lett. 83 2934
[36] Hochbaum A I, Chen R K, Delgado R D, Liang W J, Garnett E C, Najarian M, Majumdar A and Yang P D 2008 Nature 451 163
[37] Moore A L, Saha S K, Prasher R S and Shi L 2008 Appl. Phys. Lett. 93 083112
[38] Martin P, Aksamija Z, Pop E and Ravaioli U 2009 Phys. Rev. Lett. 102 125503
[39] Sadhu J and Sinha S 2011 Phys. Rev. B. 84 115450
[40] Lim J, Hippalgaonkar K, Andrews S C, Majumdar A and Yang P 2012 Nano Lett. 12 2475
[41] Malhotra1 A and Maldovan M 2016 Sci. Rep. 6 25818
[42] Lee J, Lim J and Yang P D 2015 Nano Lett. 15 3273
[43] Pauling L 1947 J. Am. Chem. Soc. 69 542
[44] Sun C Q 2007 Prog. Solid State. Chem. 35 1
[45] Xie G F, Ju Z F, Zhou K K, Wei X L, Guo Z X, Cai Y Q and Zhang G 2018 npj Comput. Mater. 4 21
[46] McGaughey A J, Landry E S, Sellan D P and Amon C H 2011 Appl. Phys. Lett. 99 131904
[47] Yang F and Dames C 2013 Phys. Rev. B. 87 035437
[48] Pop E, Dutton R W and Goodson K E 2004 J. Appl. Phys. 96 4998
[49] Dolling G and Ekland S 1963 In inelastic scattering of neutrons in solids and liquids (IAEA:Vienna) p. 37
[50] Morelli D, Heremans J and Slack G 2002 Phys. Rev. B. 66 195304
[51] Mingo N 2003 Phys. Rev. B. 68 113308
[52] Goodnick S M, Ferry D K, Wilmsen C W, Liliental Z, Fathy D and Krivanek O L 1985 Phys. Rev. B. 32 8171
[53] Buran C, Pala M G, Bescond M, Dubois M and Mouis M 2009 IEEE Trans. Elect. Dev. 56 2186
[54] Maurer L Aksamija N Z, Ramayya E B, Davoody A H and Knezevic I 2015 Appl. Phys. Lett. 106 133108
[1] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[2] Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires
Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁). Chin. Phys. B, 2020, 29(8): 084402.
[3] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[4] Tuning thermal transport via phonon localization in nanostructures
Dengke Ma(马登科), Xiuling Li(李秀玲), and Lifa Zhang(张力发). Chin. Phys. B, 2020, 29(12): 126502.
[5] Lattice thermal conductivity of β12 and χ3 borophene
Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰). Chin. Phys. B, 2020, 29(12): 126503.
[6] Thermoelectric properties of orthorhombic silicon allotrope Si (oP32) from first-principles calculations
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chao-Yu He(何朝宇), Jin Li(李金), Chun-Xiao Zhang(张春小), and Jian-Xin Zhong(钟建新). Chin. Phys. B, 2020, 29(11): 118401.
[7] Effects of surface charges on phonon properties and thermal conductivity in GaN nanofilms
Shu-Sen Yang(杨树森), Yang Hou(侯阳), Lin-Li Zhu(朱林利). Chin. Phys. B, 2019, 28(8): 086501.
[8] Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵). Chin. Phys. B, 2019, 28(8): 087804.
[9] Thermal conductivity characterization of ultra-thin silicon film using the ultra-fast transient hot strip method
Yan-Yan Zhang(张燕燕), Ran Cheng(程然), Dong Ni(倪东), Ming Tian(田明), Ji-Wu Lu(卢继武), Yi Zhao(赵毅). Chin. Phys. B, 2019, 28(7): 078105.
[10] Thermal characterization of GaN heteroepitaxies using ultraviolet transient thermoreflectance
Kang Liu(刘康), Jiwen Zhao(赵继文), Huarui Sun(孙华锐), Huaixin Guo(郭怀新), Bing Dai(代兵), Jiaqi Zhu(朱嘉琦). Chin. Phys. B, 2019, 28(6): 060701.
[11] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[12] Thermal conductivity of systems with a gap in the phonon spectrum
E Salamatov. Chin. Phys. B, 2018, 27(7): 076502.
[13] Thermal transport in semiconductor nanostructures, graphene, and related two-dimensional materials
Alexandr I. Cocemasov, Calina I. Isacova, Denis L. Nika. Chin. Phys. B, 2018, 27(5): 056301.
[14] Se substitution and micro-nano-scale porosity enhancing thermoelectric Cu2Te
Xiaoman Shi(史晓曼), Guoyu Wang(王国玉), Ruifeng Wang(王瑞峰), Xiaoyuan Zhou(周小元), Jingtao Xu(徐静涛), Jun Tang(唐军), Ran Ang(昂然). Chin. Phys. B, 2018, 27(4): 047204.
[15] Synthesis and thermoelectric properties of Nd-single filled p-type skutterudites
Hong Wu(吴宏), Nusrat Shaheen, Heng-Quan Yang(杨恒全), Kun-Ling Peng(彭坤岭), Xing-Chen Shen(沈星辰), Guo-Yu Wang(王国玉), Xu Lu(卢旭), Xiao-Yuan Zhou(周小元). Chin. Phys. B, 2018, 27(4): 047203.
No Suggested Reading articles found!