Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 107501    DOI: 10.1088/1674-1056/ab99ac

Magnetic characterization of a thin Co2MnSi/L10–MnGa synthetic antiferromagnetic bilayer prepared by MBE

Shan Li(黎姗)1,2, Jun Lu(鲁军)1,3,†, Si-Wei Mao(毛思玮)1,2, Da-Hai Wei(魏大海)1,2,3, and Jian-Hua Zhao(赵建华)1,2,3
1 State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences (CAS), Beijing 100083, China
2 Center of Materials Science and Optoelectronics Engineering & CAS Center of Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
3 Beijing Academy of Quantum Information Science, Beijing 100193, China

A synthetic antiferromagnet based on a thin antiferromagnetically coupled Co2MnSi/MnGa bilayer with Pt capping is proposed in this work. Square magnetic loops measured by anomalous Hall effect reveal that a well perpendicular magnetic anisotropy is obtained in this structure. A very large coercivity of 83 kOe (1 Oe = 79.5775 A⋅m−1) is observed near the magnetic moment compensation point of 270 K, indicating an antiferromagnetic behavior. Moreover, the anomalous Hall signal does not go to zero even at the magnetic compensation point, for which the difficulty in detecting the conventional antiferromagnets can be overcome. By changing the temperature, the polarity of the spin–orbit torque induced switching is changed around the bilayer compensation point. This kind of thin bilayer has potential applications in spin–orbit-related effects, spintronic devices, and racetrack memories.

Keywords:  exchange coupling      magnetization compensation      anomalous Hall effect      molecular-beam epitaxy  
Received:  14 February 2020      Revised:  26 May 2020      Published:  05 October 2020
PACS:  75.30.Et (Exchange and superexchange interactions)  
  75.70.Ak (Magnetic properties of monolayers and thin films)  
  73.50.Jt (Galvanomagnetic and other magnetotransport effects)  
  81.15.Hi (Molecular, atomic, ion, and chemical beam epitaxy)  
Corresponding Authors:  Corresponding author. E-mail:   
About author: 
†Corresponding author. E-mail:
* Project supported by the National Program on Key Basic Research Project, China (Grant No. 2018YFB0407601), the Key Research Project of Frontier Science of the Chinese Academy of Sciences (Grant Nos. QYZDY-SSW-JSC015 and XDPB12), and the National Natural Science Foundation of China (Grant Nos. 11874349 and 11774339).

Cite this article: 

Shan Li(黎姗), Jun Lu(鲁军)†, Si-Wei Mao(毛思玮), Da-Hai Wei(魏大海), and Jian-Hua Zhao(赵建华) Magnetic characterization of a thin Co2MnSi/L10–MnGa synthetic antiferromagnetic bilayer prepared by MBE 2020 Chin. Phys. B 29 107501

Fig. 1.  

(a) Schematic diagram of sample structure, (b) microscope photograph of Hall bar device (120 μm × 10 μm), (c) x-ray diffraction spectrum of the Co2MnSi (0.7 nm)/L10–MnGa (3 nm)/Pt (3 nm) structure, and (d) fitted peaks of Pt (002) and MnGa (002) of the Co2MnSi (0.7 nm)/L10–MnGa (3 nm)/Pt (3 nm) structure, with black, red, pink, and blue curves representing the experimental data, fitted sum of peaks, fitted Pt (002) peak, and fitted MnGa (002) peak, respectively.

Fig. 2.  

(a) RAH loop and (b) out-of-plane magnetic hysteresis loop at room temperature of sample R. (c) RAH loops of sample A at different temperatures. (d) Plots of temperature-dependent coercivity and out-of-plane remnant magnetization of sample A. (e) Plot of temperature-dependent out-of-plane remnant magnetization of sample A. (f) Remnant Hall resistance varying with temperature of sample A, showing opposite magnetic configurations in the process of temperature changing. (g) Schematic diagrams of the magnetic moment states at points A, B, C and D of (e) with “↑” and “↓” representing the magnetic moments parallel and antiparallel to the positive direction separately.

Fig. 3.  

RAH loop at (a) 280 K and (b) 240 K and SOT-induced switching loop at (c) 280 K and (d) 240 K, of sample B (Co2MnSi (0.7 nm)/L10–MnGa (3 nm)/Pt (5 nm)).

Ackermann M S, Emori S 2018 J. Appl. Phys. 124 223901 DOI: 10.1063/1.5052156
Chen R Y, Zhang R Q, Liao L Y, Chen X Z, Zhou Y J, Gu Y D, Saleem M S, Zhou X F, Pan F, Song C 2019 Appl. Phys. Lett. 115 132403 DOI: 10.1063/1.5118928
Fernandez-Pacheco A, Vedmedenko E, Ummelen F, Mansell R, Petit D, Cowburn R P 2019 Nat. Mater. 18 679 DOI: 10.1038/s41563-019-0386-4
Han D S, Lee K, Hanke J P, Mokrousov Y, Kim K W, Yoo W, van Hees Y L W, Kim T W, Lavrijsen R, You C Y, Swagten H J M, Jung M H, Klaui M 2019 Nat. Mater. 18 703 DOI: 10.1038/s41563-019-0370-z
Li Y, Jin X, Pan P, Tan F N, Lew W S, Ma F 2018 Chin. Phys. B 27 127502 DOI: 10.1088/1674-1056/27/12/127502
Duine R A, Lee K J, Parkin S S P, Stiles M D 2018 Nat. Phys. 14 217 DOI: 10.1038/s41567-018-0050-y
Shi G Y, Wan C H, Chang Y S, Li F, Zhou X J, Zhang P X, Cai J W, Han X F, Pan F, Song C 2017 Phys. Rev. B 95 104435 DOI: 10.1103/PhysRevB.95.104435
Moriyama T, Zhou W, Seki T, Takanashi K, Ono T 2018 Phys. Rev. Lett. 121 167202 DOI: 10.1103/PhysRevLett.121.167202
Bi C, Almasi H, Price K, Newhouse-Illige T, Xu M, Allen S R, Fan X, Wang W 2017 Phys. Rev. B 95 104434 DOI: 10.1103/PhysRevB.95.104434
Zhang P X, Liao L Y, Shi G Y, Zhang R Q, Wu H Q, Wang Y Y, Pan F, Song C 2018 Phys. Rev. B 97 214403 DOI: 10.1103/PhysRevB.97.214403
Yang S H, Ryu K S, Parkin S 2015 Nat. Nanotechnol. 10 221 DOI: 10.1038/nnano.2014.324
Barker J, Tretiakov O A 2016 Phys. Rev. Lett. 116 147203 DOI: 10.1103/PhysRevLett.116.147203
Jin C, Song C, Wang J, Liu Q 2016 Appl. Phys. Lett. 109 182404 DOI: 10.1063/1.4967006
Lee J C T, Chess J J, Montoya S A, Shi X, Tamura N, Mishra S K, Fischer P, McMorran B J, Sinha S K, Fullerton E E, Kevan S D, Roy S 2016 Appl. Phys. Lett. 109 022402 DOI: 10.1063/1.4955462
Zhang X, Zhou Y, Ezawa M 2016 Sci. Rep. 6 24795 DOI: 10.1038/srep24795
Zhang X, Zhou Y, Ezawa M 2016 Nat. Commun. 7 10293 DOI: 10.1038/ncomms10293
Kim S K, Lee K J, Tserkovnyak Y 2017 Phys. Rev. B 95 140404(R) DOI: 10.1103/PhysRevB.95.140404
Xia H, Jin C, Song C, Wang J, Wang J, Liu Q 2017 J. Phys. D: Appl. Phys. 50 505005 DOI: 10.1088/1361-6463/aa95f2
Akosa C A, Tretiakov O A, Tatara G, Manchon A 2018 Phys. Rev. Lett. 121 097204 DOI: 10.1103/PhysRevLett.121.097204
Caretta L, Mann M, Buttner F, Ueda K, Pfau B, Gunther C M, Hessing P, Churikova A, Klose C, Schneider M, Engel D, Marcus C, Bono D, Bagschik K, Eisebitt S, Beach G S D 2018 Nat. Nanotechnol. 13 1154 DOI: 10.1038/s41565-018-0255-3
Xing L, Hua D, Wang W 2018 J. Appl. Phys. 124 123904 DOI: 10.1063/1.5042794
Hirata Y, Kim D H, Kim S K, Lee D K, Oh S H, Kim D Y, Nishimura T, Okuno T, Futakawa Y, Yoshikawa H, Tsukamoto A, Tserkovnyak Y, Shiota Y, Moriyama T, Choe S B, Lee K J, Ono T 2019 Nat. Nanotechnol. 14 232 DOI: 10.1038/s41565-018-0345-2
Khoshlahni R, Qaiumzadeh A, Bergman A, Brataas A 2019 Phys. Rev. B 99 054423 DOI: 10.1103/PhysRevB.99.054423
Fache T, Tarazona H S, Liu J, L’vova G, Applegate M J, Rojas-Sanchez J C, Petit-Watelot S, Landauro C V, Quispe-Marcatoma J, Morgunov R, Barnes C H W, Mangin S 2018 Phys. Rev. B 98 064410 DOI: 10.1103/PhysRevB.98.064410
Ranjbar R, Suzuki K Z, Sugihara A, Ando Y, Miyazaki T, Mizukami S 2017 J. Magn. Magn. Mater. 433 195 DOI: 10.1016/j.jmmm.2017.03.018
Ranjbar R, Suzuki K, Sugihara A, Miyazaki T, Ando Y, Mizukami S 2015 Materials (Basel) 8 6531 DOI: 10.3390/ma8095320
Ma Q L, Mizukami S, Kubota T, Zhang X M, Ando Y, Miyazaki T 2014 Phys. Rev. Lett. 112 157202 DOI: 10.1103/PhysRevLett.112.157202
Mao S W, Lu J, Zhao X P, Wang X L, Wei D H, Liu J, Xia J B, Zhao J H 2017 Sci. Rep. 7 43064 DOI: 10.1038/srep43064
Lu J, Mao S W, Zhao X P, Wang X L, Liu J, Xia J B, Xiong P, Zhao J H 2017 Sci. Rep. 7 16990 DOI: 10.1038/s41598-017-16761-z
Li S, Lu J, Wen L J, Pan D, Wang H L, Wei D H, Zhao J H 2020 Chin. Phys. Lett. 37 077303 DOI: 10.1088/0256-307X/37/7/077303
Zhu L J, Pan D, Zhao J H 2014 Phys. Rev. B 89 220406(R) DOI: 10.1103/PhysRevB.89.220406
Zhu L J, Pan D, Nie S H, Lu J, Zhao J H 2013 Appl. Phys. Lett. 102 132403 DOI: 10.1063/1.4799344
Matsuno J, Ogawa N, Yasuda K, Kagawa F, Koshibae W, Nagaosa N, Tokura Y, Kawasaki M 2016 Sci. Adv. 2 e1600304 DOI: 10.1126/sciadv.1600304
Kan D, Moriyama T, Kobayashi K, Shimakawa Y 2018 Phys. Rev. B 98 18048(R)
Ludbrook B M, Dubuis G, Puichaud A H, Ruck B J, Granville S 2017 Sci. Rep. 7 13620 DOI: 10.1038/s41598-017-13211-8
Finley J, Liu L 2016 Phys. Rev. Appl. 6 054001 DOI: 10.1103/PhysRevApplied.6.054001
Siddiqui S A, Han J, Finley J T, Ross C A, Liu L 2018 Phys. Rev. Lett. 121 057701 DOI: 10.1103/PhysRevLett.121.057701
Wang W H, Ren X B, Wu G H, Przybylski M, Barthel J, Kirschner J 2005 IEEE Trans. Magn. 41 2805 DOI: 10.1109/TMAG.2005.854833
Wang W H, Ren X B, Wu G H, Przybylski M, Barthel J, Kirschner J 2017 Phys. Rev. Lett. 118 167201 DOI: 10.1103/PhysRevLett.118.167201
Mishra R, Yu J, Qiu X, Motapothula M, Venkatesan T, Yang H 2017 Phys. Rev. Lett. 118 167201 DOI: 10.1103/PhysRevLett.118.167201
[1] Anomalous Hall effect in ferromagnetic Weyl semimetal candidate Zr1-xVxCo1.6Sn
Guangqiang Wang(王光强), Zhanghao Sun(孙彰昊), Xinyu Si(司鑫宇), Shuang Jia(贾爽). Chin. Phys. B, 2020, 29(7): 077503.
[2] Surface states modulated exchange interaction in Bi2Se3/thulium iron garnet heterostructures
Hai-Bin Shi(石海滨), Li-Qin Yan(闫丽琴), Yang-Tao Su(苏仰涛), Li Wang(王力), Xin-Yu Cao(曹昕宇), Lin-Zhu Bi(毕林竹), Yang Meng(孟洋), Yang Sun(孙阳), and Hong-Wu Zhao(赵宏武). Chin. Phys. B, 2020, 29(11): 117302.
[3] Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal
Zedong Li(李泽东) and Z F Wang(王征飞)†. Chin. Phys. B, 2020, 29(10): 107101.
[4] Temperature-dependent interlayer exchange coupling strength in synthetic antiferromagnetic[Pt/Co]2/Ru/[Co/Pt]4 multilayers
Yong Li(李勇), Xiangjun Jin(金香君), Pengfei Pan(潘鹏飞), Fu Nan Tan, Wen Siang Lew, Fusheng Ma(马付胜). Chin. Phys. B, 2018, 27(12): 127502.
[5] Anisotropic nanocomposite soft/hard multilayer magnets
Wei Liu(刘伟), Zhidong Zhang(张志东). Chin. Phys. B, 2017, 26(11): 117502.
[6] AlOx/LiF composite protection layer for Cr-doped (Bi, Sb)2Te3 quantum anomalous Hall films
Yunbo Ou(欧云波), Yang Feng(冯洋), Xiao Feng(冯硝), Zhenqi Hao(郝镇齐), Liguo Zhang(张立果), Chang Liu(刘畅), Yayu Wang(王亚愚), Ke He(何珂), Xucun Ma(马旭村), Qikun Xue(薛其坤). Chin. Phys. B, 2016, 25(8): 087307.
[7] Effect of exchange coupling on magnetic property in Sm-Co/α-Fe layered system
C X Sang(桑成祥), G P Zhao(赵国平), W X Xia(夏卫星), X L Wan(万秀琳), F J Morvan, X C Zhang(张溪超), L H Xie(谢林华), J Zhang(张健), J Du(杜娟), A R Yan(闫阿儒), P Liu(刘平). Chin. Phys. B, 2016, 25(3): 037501.
[8] Quantum anomalous Hall effect in real materials
Jiayong Zhang(张加永), Bao Zhao(赵宝), Tong Zhou(周通), Zhongqin Yang(杨中芹). Chin. Phys. B, 2016, 25(11): 117308.
[9] Evolution of structure and magnetic properties in PrCo5 magnet for high energy ball milling in ethanol
Li Zhu-Bai, Lan Jian-Ting, Zhang Xue-Feng, Liu Yan-Li, Li Yong-Feng. Chin. Phys. B, 2015, 24(8): 087501.
[10] Localization correction to the anomalous Hall effect in amorphous CoFeB thin films
Ding Jin-Jun, Wu Shao-Bing, Yang Xiao-Fei, Zhu Tao. Chin. Phys. B, 2015, 24(2): 027201.
[11] Tb doping induced enhancement of anomalous Hall effect in NiFe films
Zhu Jia-Peng, Ma Li, Zhou Shi-Ming, Miao Jun, Jiang Yong. Chin. Phys. B, 2015, 24(1): 017101.
[12] Large coercivity and unconventional exchange coupling in manganese-oxide-coated manganese–gallium nanoparticles
Feng Jun-Ning, Liu Wei, Geng Dian-Yu, Ma Song, Yu Tao, Zhao Xiao-Tian, Dai Zhi-Ming, Zhao Xin-Guo, Zhang Zhi-Dong. Chin. Phys. B, 2014, 23(8): 087503.
[13] Anomalous Hall effect in perpendicular CoFeB thin films
Zhu Tao. Chin. Phys. B, 2014, 23(4): 047504.
[14] Thickness dependence of the anomalous Hall effect in disordered face-centered cubic FePt alloy films
Chen Ming, He Pan, Zhou Shi-Ming, Shi Zhong. Chin. Phys. B, 2014, 23(1): 017104.
[15] From magnetically doped topological insulator to the quantum anomalous Hall effect
He Ke, Ma Xu-Cun, Chen Xi, Lü Li, Wang Ya-Yu, Xue Qi-Kun. Chin. Phys. B, 2013, 22(6): 067305.
No Suggested Reading articles found!