Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 097102    DOI: 10.1088/1674-1056/ab9741
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2

Long Lin(林龙)1, Yi-Peng Guo(郭义鹏)1, Chao-Zheng He(何朝政)2, Hua-Long Tao(陶华龙)3, Jing-Tao Huang(黄敬涛)1, Wei-Yang Yu(余伟阳)4, Rui-Xin Chen(陈瑞欣)1, Meng-Si Lou(娄梦思)1, Long-Bin Yan(闫龙斌)1
1 Cultivating Base for Key Laboratory of Environment-Friendly Inorganic Materials in Henan Province, School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
2 Institute of Environmental and Energy Catalysis, School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710021, China;
3 Liaoning Key Materials Laboratory for Railway, School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China;
4 School of Physics and Electronic Information Engineering, Henan Polytechnic University, Jiaozuo 454003, China
Abstract  The electronic structures and magnetic properties of diverse transition metal (TM=Fe, Co, and Ni) and nitrogen (N) co-doped monolayer MoS2 are investigated by using density functional theory. The results show that the intrinsic MoS2 does not have magnetism initially, but doped with TM (TM=Fe, Co, and Ni) the MoS2 possesses an obvious magnetism distinctly. The magnetic moment mainly comes from unpaired Mo:4d orbitals and the d orbitals of the dopants, as well as the S:3p states. However, the doping system exhibits certain half-metallic properties, so we select N atoms in the V family as a dopant to adjust its half-metal characteristics. The results show that the (Fe, N) co-doped MoS2 can be a satisfactory material for applications in spintronic devices. On this basis, the most stable geometry of the (2Fe-N) co-doped MoS2 system is determined by considering the different configurations of the positions of the two Fe atoms. It is found that the ferromagnetic mechanism of the (2Fe-N) co-doped MoS2 system is caused by the bond spin polarization mechanism of the Fe-Mo-Fe coupling chain. Our results verify that the (Fe, N) co-doped single-layer MoS2 has the conditions required to become a dilute magnetic semiconductor.
Keywords:  MoS2      first principle calculations      diluted magnetic semiconductors      magnetic property  
Received:  12 April 2020      Revised:  14 May 2020      Published:  05 September 2020
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the Key Project of the National Natural Science Foundation of China (Grant No. 51702089), the National Natural Science Foundation of China (Grant Nos. 21603109 and 11804081), the Henan Joint Fund of the National Natural Science Foundation of China (Grant No. U1404216), China Postdoctoral Science Foundation (Grant No. 2019M652425), the One Thousand Talent Plan of Shaanxi Province, China, the Natural Science Foundation of Henan Province, China (Grant Nos. 182102210305 and 19B430003), the Key Research Project for the Universities of Henan Province, China (Grant No. 19A140009), the Doctoral Foundation of Henan Polytechnic University, China (Grant No. B2018-38), the Open Project of Key Laboratory of Radio Frequency and Micro-Nano, and the Fund from the Electronics of Jiangsu Province, China (Grant No. LRME201601).
Corresponding Authors:  Chao-Zheng He     E-mail:  hecz2019@xatu.edu.cn

Cite this article: 

Long Lin(林龙), Yi-Peng Guo(郭义鹏), Chao-Zheng He(何朝政), Hua-Long Tao(陶华龙), Jing-Tao Huang(黄敬涛), Wei-Yang Yu(余伟阳), Rui-Xin Chen(陈瑞欣), Meng-Si Lou(娄梦思), Long-Bin Yan(闫龙斌) First-principles study of magnetism of 3d transition metals and nitrogen co-doped monolayer MoS2 2020 Chin. Phys. B 29 097102

[1] Castro Neto A H, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[2] Lucking M C, Xie W Y, Choe D H, West D, Lu T M and Zhang S B 2018 Phys. Rev. Lett. 120 086101
[3] Lu J P, Yang J, Carvalho A, Liu H, Lu Y R and Sow C H 2016 Acc. Chem. Res. 49 1806
[4] Li Y G, Li Y L, Sa B S and Ahuja R 2017 Catal. Sci. Technol. 7 545
[5] Feng Y P, Shen L, Yang M, Wang A Z, Zeng M G, Wu Q Y, Chintalapati S and Chang C R 2017 WIREs. Comput. Mol. Sci. 7 e1313
[6] Kime G, Leontiadou M A, Brent J, Savjani N, O'Brien P and Binks D J 2017 J. Phys. Chem. C 121 22415
[7] Wen M, Xu J P, Liu L, Lai P T and Tang W M 2017 IEEE Trans. Electron Dev. 99 1
[8] Liu L, Wang X D, Han L, Tian B B, Chen Y, Wu G J, Li D, Yan M G, Wang T, Sun S, Shen H, Lin T, Sun J, Duan C, Wang J L, Meng X J and Chu J H 2017 AIP Adv. 7 065121
[9] Benavente E, Durán F, Sotomayor-Torres C and González G 2018 J. Phys. Chem. Solids 113 119
[10] Niefind F, Djamil J, Bensch W, Srinivasan B R, Sinev I, Grünert W, Deng M, Kienle L, Lotnyk A, Mesch M B, Senker J, Durag L and Beweries T 2015 RSC Adv. 5 67742
[11] Cho B, Hahm M G, Choi M, Yoon J, Kim A R, Lee Y J, Park S G, Kwon J D, Kim C S, Song M, Jeong Y, Nam K S, Lee S, Yoo T J, Kang C G, Lee B H, Ko H C, Ajayan P M and Kim D H 2015 Sci. Rep. 5 8052
[12] Li Y, Cai C, Gu Y, Cheng W, Xiong W and Zhao C 2017 Appl. Surf. Sci. 414 34
[13] Xie Y, Zhang B, Wang S, Wang D, Wang A, Wang Z, Yu H, Zhang H, Chen Y, Zhao M, Huang B, Mei L and Wang J 2017 Adv. Mater. 29 1605972
[14] Radisavljevic B, Radenovic A, Brivio J, Giacometti V and Kis A 2011 Nat. Nanotechnol. 6 147
[15] Komsa H P, Kurasch S, Lehtinen O, Kaiser U and Krasheninnikov A V 2013 Phys. Rev. B 88 1
[16] Suh J, Tan T L, Zhao W, Park J, Lin D Y, Park T E, Kim J, Jin C, Saigal N, Ghosh S, Wong Z M, Chen Y, Wang F, Walukiewicz W, Eda G and Wu J 2018 Nat. Commun. 9 1
[17] Fan Y H, Zhang J Y, Qiu Y Z, Zhu J, Zhang Y F and Hu G L 2017 Comput. Mater. Sci. 138 255
[18] Zhang L Q, Liu T M, Li T F and Hussain S 2017 Physica E 94 47
[19] Ramasubramaniam A and Naveh D 2013 Phys. Rev. B 87 1
[20] Zhao H M 2016 Joint International Information Technology, Mechanical and Electronic Engineering Conference, October 4-5, 2016, Xi'an, China, p. 530
[21] Cui H, Zhang X, Zhang G and Tang J 2019 Appl. Surf. Sci. 470 1035
[22] Cheriyan S, Balamurgan D and Sriram S 2018 Superlattices Microstruct. 116 238
[23] Garandel T, Arras R, Marie X, Renucci P and Calmels L 2017 Phys. Rev. B 95 1
[24] Cheng Y C, Zhu Z Y, Mi W B, Guo Z B and Schwingenschlgl U 2013 Phys. Rev. B 87 100401(R)
[25] Yue Q, Chang S, Qin S and Li J 2013 Phys. Lett. A 377 1362
[26] Lu S C and Leburton J P 2014 Nanoscale Res. Lett. 9 676
[27] Yiren W, Li-Ting Tseng, Peter P, Murmu, Nina Bao and John 2017 Mater. Des. 121 77
[28] Komsa H P, Kotakoski J, Kurasch S, Lehtinen O, Kaiser U and Krasheninnikov A V 2012 Phys. Rev. Lett. 109 35503
[29] Dai Z, Jin W, Grady M, Sadowski J T, Dadap J I, Osgood R M and Pohl K 2017 Surf. Sci. 660 16
[30] Wu P, Yin N, Li P, Cheng W and Huang M 2017 Phys. Chem. Chem. Phys. 19 20713
[31] Lin L, Huang J, Yu W, Zhu L, Tao H, Wang P and Guo Y P 2019 Solid State Commun. 301 113702
[32] Guan L, Tan F X, Jia G Q, Shen G M, Liu B T and Li X 2016 Chin. Phys. Lett. 33 087301
[33] Dai X, Le C C, Wu X X, Qin S S, Lin Z P and Hu J P 2016 Chin. Phys. Lett. 33 127301
[34] Hu Y J, Xu S L, Wang H, Liu H, Xu X C and Cai Y X 2016 Chin. Phys. Lett. 33 106102
[35] Gu Y H, Feng Q, Chen J J, Li Y H and Cai C Z 2016 Chin. Phys. Lett. 33 077102
[36] Sun J P, Zhang D and Chang K 2017 Chin. Phys. Lett. 34 027102
[37] Liu P, Wang W H, Wang W C, Cheng Y H, Lu F and Liu H 2017 Chin. Phys. Lett. 34 027101
[38] Mak K F, Lee C, Hone J, Shan J and Heinz T F 2010 Phys. Rev. Lett. 105 136805
[39] Splendiani A, Sun L, Zhang Y, Li T, Kim J, Chim C Y, Galli G and Wang F 2010 Nano Lett. 10 1271
[40] Hu A M, Wang L L, Xiao W Z, Xiao G and Rong Q Y 2015 Comput. Mater. Sci. 107 72
[41] Jia C, Zhou B, Song Q, Zhang X and Jiang Z 2018 RSC Adv. 8 18837
[1] High-frequency magnetic properties and core loss of carbonyl iron composites with easy plane-like structures
Guo-Wu Wang(王国武), Chun-Sheng Guo(郭春生), Liang Qiao(乔亮), Tao Wang(王涛), and Fa-Shen Li(李发伸). Chin. Phys. B, 2021, 30(2): 027504.
[2] Strain and interfacial engineering to accelerate hydrogen evolution reaction of two-dimensional phosphorus carbide
Tao Huang(黄韬), Yuan Si(思源), Hong-Yu Wu(吴宏宇), Li-Xin Xia(夏立新), Yu Lan(蓝郁), Wei-Qing Huang(黄维清), Wang-Yu Hu(胡望宇), and Gui-Fang Huang(黄桂芳). Chin. Phys. B, 2021, 30(2): 027101.
[3] Temperature-switching logic in MoS2 single transistors
Xiaozhang Chen(陈孝章), Lehua Gu(顾乐华), Lan Liu(刘岚), Huawei Chen(陈华威), Jingyu Li(栗敬俣), Chunsen Liu(刘春森), Peng Zhou(周鹏). Chin. Phys. B, 2020, 29(9): 097201.
[4] Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋). Chin. Phys. B, 2020, 29(6): 066101.
[5] A simple tight-binding approach to topological superconductivity in monolayer MoS2
H Simchi. Chin. Phys. B, 2020, 29(2): 027401.
[6] Characterization of swift heavy ion tracks in MoS2 by transmission electron microscopy
Li-Jun Xu(徐丽君), Peng-Fei Zhai(翟鹏飞)†, Sheng-Xia Zhang(张胜霞), Jian Zeng(曾健), Pei-Pei Hu(胡培培), Zong-Zhen Li(李宗臻), Li Liu(刘丽), You-Mei Sun(孙友梅), and Jie Liu(刘杰)‡. Chin. Phys. B, 2020, 29(10): 106103.
[7] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[8] Improved performance of back-gate MoS2 transistors by NH3-plasma treating high-k gate dielectrics
Jian-Ying Chen(陈建颖), Xin-Yuan Zhao(赵心愿), Lu Liu(刘璐), Jing-Ping Xu(徐静平). Chin. Phys. B, 2019, 28(12): 128101.
[9] Pressure-mediated contact quality improvement between monolayer MoS2 and graphite
Mengzhou Liao(廖梦舟), Luojun Du(杜罗军), Tingting Zhang(张婷婷), Lin Gu(谷林), Yugui Yao(姚裕贵), Rong Yang(杨蓉), Dongxia Shi(时东霞), Guangyu Zhang(张广宇). Chin. Phys. B, 2019, 28(1): 017301.
[10] Structural evolutions and electronic properties of AunGd (n=6-15) small clusters: A first principles study
Han-Xing Zhang(张汉星), Chao-Hao Hu(胡朝浩), Dian-Hui Wang(王殿辉), Yan Zhong(钟燕), Huai-Ying Zhou(周怀营), Guang-Hui Rao(饶光辉). Chin. Phys. B, 2018, 27(8): 083601.
[11] In situ growth of different numbers of gold nanoparticles on MoS2 with enhanced electrocatalytic activity for hydrogen evolution reaction
Xuan Zhao(赵宣), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Chen Fu(付晨). Chin. Phys. B, 2018, 27(6): 068103.
[12] Li adsorption on monolayer and bilayer MoS2 as an ideal substrate for hydrogen storage
Cheng Zhang(张诚), Shaolong Tang(唐少龙), Mingsen Deng(邓明森), Youwei Du(都有为). Chin. Phys. B, 2018, 27(6): 066103.
[13] Facile and controllable synthesis of molybdenum disulfide quantum dots for highly sensitive and selective sensing of copper ions
Xue Li(李雪), Da-Wei He(何大伟), Yong-Sheng Wang(王永生), Yin Hu(胡音), Xuan Zhao(赵宣), Chen Fu(付晨), Jing-Yan Wu(吴静燕). Chin. Phys. B, 2018, 27(5): 056104.
[14] Gap plasmon-enhanced photoluminescence of monolayer MoS2 in hybrid nanostructure
Le Yu(余乐), Di Liu(刘頔), Xiao-Zhuo Qi(祁晓卓), Xiao Xiong(熊霄), Lan-Tian Feng(冯兰天), Ming Li(李明), Guo-Ping Guo(郭国平), Guang-Can Guo(郭光灿), Xi-Feng Ren(任希锋). Chin. Phys. B, 2018, 27(4): 047302.
[15] Thermal properties of transition-metal dichalcogenide
Xiangjun Liu(刘向军), Yong-Wei Zhang(张永伟). Chin. Phys. B, 2018, 27(3): 034402.
No Suggested Reading articles found!