Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 093101    DOI: 10.1088/1674-1056/ab9619
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures

Jinlong Wang(王金龙)1, Wenqiang Dang(党文强)2, Daping Liu(刘大平)1, Zhichao Guo(郭志超)1
1 Department of Physics, Xinxiang University, Xinxiang 453003, China;
2 Department of Physics, Tianshui Normal University, Tianshui 741000, China
Abstract  The behaviors of helium clusters and self-interstitial tungsten atoms at different temperatures are investigated with the molecular dynamics method. The self-interstitial tungsten atoms prefer to form crowdions which can tightly bind the helium cluster at low temperature. The crowdion can change its position around the helium cluster by rotating and slipping at medium temperatures, which leads to formation of combined crowdions or dislocation loop locating at one side of a helium cluster. The combined crowdions or dislocation loop even separates from the helium cluster at high temperature. It is found that a big helium cluster is more stable and its interaction with crowdions or dislocation loop is stronger.
Keywords:  helium cluster      self-interstitial      tungsten      molecular dynamics simulation  
Received:  31 March 2020      Revised:  21 May 2020      Published:  05 September 2020
PACS:  31.15.xv (Molecular dynamics and other numerical methods)  
  61.80.Jh (Ion radiation effects)  
  61.82.Bg (Metals and alloys)  
Fund: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11705157), the Henan Provincial Key Research Projects, China (Grant No. 17A140027), and the Ninth Group of Key Disciplines in Henan Province of China (Grant No. 2018119).
Corresponding Authors:  Jinlong Wang, Wenqiang Dang     E-mail:  396292346@qq.com;530262320@qq.com

Cite this article: 

Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超) Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures 2020 Chin. Phys. B 29 093101

[1] Sethian J D, Raffray A R, Latkowski J, Blanchard J P, Snead L, Renk T J and Sharafat S 2005 J. Nucl. Mater. 347 161
[2] Bolt H, Barabash V, Krauss W, Linke J, Neu R, Suzuki S, Yoshida N and Team A U 2004 J. Nucl. Mater. 329-333 66
[3] Nishijima D, Miyamoto M, Iwakiri H, Ye M Y, Ohno N, Tokunaga K, Yoshida N and Takamura S 2005 Mater. Trans. 46 561
[4] Baldwin M and Doerner R 2008 Nucl. Fusion 48 035001
[5] Nordlund K, Bjorkas C, Ahlgren T, Lasa A and Sand A E 2014 J. Phys. D 47 224018
[6] Tokitani M, Yoshida N, Tokunaga K, Sakakita H, Kiyama S, Koguchi H, Hirano Y and Masuzaki S 2010 Plasma Fusion Res. 5 012
[7] De Temmerman G, Bystrov K, Zielinski J J J, Balden M, Matern G, Arnas C and Marot L 2012 J. Vac. Sci. Technol. 30 041306
[8] De Temmerman G, Bystrov K, Doerner R, Marot L, Wright G, Woller K, Whyte D and Zielinski J 2013 J. Nucl. Mater. 438 S78
[9] Baldwin M J and Doerner R P 2010 J. Nucl. Mater. 404 165
[10] Yoshida N, Iwakiri H, Tokunaga K and Baba T 2005 J. Nucl. Mater. 337-339 946
[11] Chen Z, Kecskes L J, Zhu K and Wei Q 2016 J. Nucl. Mater. 481 190
[12] Abernethy R G 2017 Mater. Sci. Technol. 33 388
[13] Becquart C and Domain C 2006 Phys. Rev. Lett. 97 196402
[14] Becquart C and Domain C 2009 J. Nucl. Mater. 385 223
[15] Tamura T, Kobayashi R, Ogata S and Ito A M 2014 Modell. Simul. Mater. Sci. Eng. 22 015002
[16] Liu Y, Zhou H, Zhang Y, Jin S and Lu G 2009 Nucl. Instrum. & Methods Phys. Res. Sect. B-beam Interact. Mater. Atoms 267 3193
[17] Boisse J, Domain C and Becquart C 2014 J. Nucl. Mater. 455 10
[18] Smirnov R, Krasheninnikov S and Guterl J 2015 J. Nucl. Mater. 463 359
[19] Zhou Y, Wang J, Hou Q and Deng A 2014 J. Nucl. Mater. 446 49
[20] Hu L, Hammond K D, Wirth B D and Maroudas D 2014 J. Appl. Phys. 115 173512
[21] Hu L, Hammond K D, Wirth B D and Maroudas D 2014 Surf. Sci. 626 L21
[22] Perez D, Vogel T and Uberuaga B P 2014 Phys. Rev. B 90 014102
[23] Sefta F, Hammond K D, Juslin N and Wirth B D 2013 Nucl. Fusion 53 073015
[24] Wang J, Niu L L, Shu X and Zhang Y 2015 Nucl. Fusion 55 092003
[25] Kobayashi R, Hattori T, Tamura T and Ogata S 2015 J. Nuclear Materials 463 1071
[26] You Y, Li D, Kong X, Wu X, Liu C S, Fang Q F, Pan B C, Chen J and Luo G N 2014 Nucl. Fusion 54 103007
[27] Harrison R W, Greaves G, Hinks J and Donnelly S 2017 J. Nucl. Mater. 495 492
[28] Takayama A, Ito A M, Saito S, Ohno N and Nakamura H 2013 Jpn. J. Appl. Phys. 52 01AL03
[29] Zhan J, Ye M, Mao S, Ren J and Xu X 2019 Fusion Engineering and Design 146 983
[30] Pentecoste L, Brault P, Thomann A L, Desgardin P, Lecas T, Belhabib T, Barthe M F and Sauvage T 2016 J. Nucl. Mater. 470 44
[31] Mason D R, Yi X, Kirk M A and Dudarev S L 2014 J. Phys.: Condens. Matter 26 375701
[32] Kong X, Wu X, You Y, Liu C S, Fang Q F, Chen J, Luo G N and Wang Z 2014 Acta Mater. 66 172
[33] Derlet P M, Nguyen-Manh D and Dudarev S 2007 Phys. Rev. B 76 054107
[34] Wang J, He B, Song W and Dang W 2019 Mol. Simul. 45 666
[35] Wang J, Niu L L, Shu X and Zhang Y 2015 J. Phys.: Condens. Matter 27 395001
[36] Hammond K D, Ferroni F and Wirth B D 2017 Fusion Sci. Technol. 71 7
[37] Li X, Liu Y, Yu Y, Luo G, Shu X and Lu G 2014 J. Nucl. Mater. 451 356
[38] Sandoval L, Perez D, Uberuaga B P and Voter A F 2015 Phys. Rev. Lett. 114 105502
[39] Kajita S, Sakaguchi W, Ohno N, Yoshida N and Saeki T 2009 Nucl. Fusion 49 095005
[40] Nishijima D, Ye M Y, Ohno N and Takamura S 2004 J. Nucl. Mater. 329-333 1029
[41] Valles G, Martin-Bragado I, Nordlund K, Lasa A, Björkas C, Safi E, Perlado J and Rivera A 2017 J. Nucl. Mater. 490 108
[42] Plimpton S 1995 J. Comput. Phys. 117 1
[43] Stukowski A 2009 Modell. Simul. Mater. Sci. Eng. 18 015012
[44] Bonny G, Grigorev P and Terentyev D 2014 J. Phys.: Condens. Matter 26 485001
[45] Juslin N and Wirth B D 2013 J. Nucl. Mater. 432 61
[46] Voter A F 1998 Phys. Rev. B 57 R13985
[47] Voter A F, Montalenti F and Germann T C 2002 Annu. Rev. Mater. Res. 32 321
[48] Krasheninnikov S, Faney T and Wirth B 2014 Nucl. Fusion 54 073019
[1] Multi-scale molecular dynamics simulations and applications on mechanosensitive proteins of integrins
Shouqin L\"u(吕守芹), Qihan Ding(丁奇寒), Mingkun Zhang(张明焜), and Mian Long(龙勉). Chin. Phys. B, 2021, 30(3): 038701.
[2] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[3] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[4] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[5] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[6] Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys
Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙). Chin. Phys. B, 2020, 29(6): 066201.
[7] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[8] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[9] Fractional variant of Stokes-Einstein relation in aqueous ionic solutions under external static electric fields
Gan Ren(任淦), Shikai Tian(田时开). Chin. Phys. B, 2020, 29(3): 036101.
[10] Find slow dynamic modes via analyzing molecular dynamics simulation trajectories
Chuanbiao Zhang(张传彪) and Xin Zhou(周昕)†. Chin. Phys. B, 2020, 29(10): 108706.
[11] Structural and dynamical mechanisms of a naturally occurring variant of the human prion protein in preventing prion conversion
Yiming Tang(唐一鸣), Yifei Yao(姚逸飞), and Guanghong Wei(韦广红)†. Chin. Phys. B, 2020, 29(10): 108710.
[12] Hardening effect of multi-energyW2+-ion irradiation on tungsten–potassium alloy
Yang-Yi-Peng Song(宋阳一鹏), Wen-Bin Qiu(邱文彬), Long-Qing Chen(陈龙庆), Xiao-Liang Yang(杨晓亮), Hao Deng(邓浩), Chang-Song Liu(刘长松), Kun Zhang(张坤)†, and Jun Tang(唐军)‡. Chin. Phys. B, 2020, 29(10): 105202.
[13] Nucleation and growth of helium bubble at (110) twist grain boundaries in tungsten studied by molecular dynamics
Fang-Biao Li(李芳镖), Guang Ran(冉广), Ning Gao(高宁), Shang-Quan Zhao(赵尚泉), Ning Li(李宁). Chin. Phys. B, 2019, 28(8): 085203.
[14] Numerical study of influence of J×B force on melt layer under conditions relevant to ITER ELMs
Yan Huang(黄艳), Ji-Zhong Sun(孙继忠), Juan Cai(蔡娟), Zhen-Yue Sun(孙振月), Chao-Feng Sang(桑超峰), De-Zhen Wang(王德真). Chin. Phys. B, 2019, 28(4): 045201.
[15] First-principles study of structural, mechanical, and electronic properties of W alloying with Zr
Ning-Ning Zhang(张宁宁), Yu-Juan Zhang(张玉娟), Yu Yang(杨宇), Ping Zhang(张平), Chang-Chun Ge(葛昌纯). Chin. Phys. B, 2019, 28(4): 046301.
No Suggested Reading articles found!