Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 087103    DOI: 10.1088/1674-1056/ab943a
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation

Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明)
Faculty of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
Abstract  The fascinating Dirac cone in honeycomb graphene, which underlies many unique electronic properties, has inspired the vast endeavors on pursuing new two-dimensional (2D) Dirac materials. Based on the density functional theory method, a 2D material Zn3Si2 of honeycomb transition-metal silicide with intrinsic Dirac cones has been predicted. The Zn3Si2 monolayer is dynamically and thermodynamically stable under ambient conditions. Importantly, the Zn3Si2 monolayer is a room-temperature 2D Dirac material with a spin-orbit coupling energy gap of 1.2 meV, which has an intrinsic Dirac cone arising from the special hexagonal lattice structure. Hole doping leads to the spin polarization of the electron, which results in a Dirac half-metal feature with single-spin Dirac fermion. This novel stable 2D transition-metal-silicon-framework material holds promises for electronic device applications in spintronics.
Keywords:  two-dimensional (2D) Dirac cone material      Dirac half-metal      first-principles calculation      spin-orbit coupling  
Received:  13 March 2020      Revised:  18 May 2020      Published:  05 August 2020
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  73.20.At (Surface states, band structure, electron density of states)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674136 and 11564022), Yunnan Province for Recruiting High-Caliber Technological Talents, China (Grant No. 1097816002), Reserve Talents for Yunnan Young and Middle-aged Academic and Technical Leaders, China (Grant No. 2017HB010), the Academic Qinglan Project of KUST (Grant No. 1407840010), the Analysis and Testing Fund of KUST (Grant No. 2017M20162230010), and the High-level Talents of KUST (Grant No. 1411909425).
Corresponding Authors:  Cuixia Yan, Cuixia Yan     E-mail:  cuixiayan09@gmail.com;j.cai@kmsut.edu.cn

Cite this article: 

Yurou Guan(官雨柔), Lingling Song(宋玲玲), Hui Zhao(赵慧), Renjun Du(杜仁君), Liming Liu(刘力铭), Cuixia Yan(闫翠霞), Jinming Cai(蔡金明) Two-dimensional hexagonal Zn3Si2 monolayer: Dirac cone material and Dirac half-metallic manipulation 2020 Chin. Phys. B 29 087103

[1] Wehling T, Black-Schaffer A M and Balatsky A V 2014 Adv. Phys. 63 1
[2] Castro Neto A H, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[3] Liu C C, Feng W X and Yao Y G 2011 Phys. Rev. Lett. 107 076802
[4] Cahangirov S, Topsakal M, Aktürk E, Şahin H, and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[5] Zhu F F, Chen W J, Xu Y, Gao C L, Guan D D, Liu C H, Qian D, Zhang S C and Jia J F 2015 Nat. Mater. 14 1020
[6] Novoselov K 2007 Nat. Mater. 6 720
[7] Novoselov K S, Geim A K, Morozov S, Jiang D, Katsnelson M I, Grigorieva I, Dubonos S and Firsov A A 2005 Nature 438 197
[8] Zhang Y, Tan Y W, Stormer H L and Kim P 2005 Nature 438 201
[9] Bolotin K I, Ghahari F, Shulman M D, Stormer H L and Kim P 2009 Nature 462 196
[10] Du X, Skachko I, Duerr F, Luican A and Andrei E Y 2009 Nature 462 192
[11] Dean C R, Wang L, Maher P, Forsythe C, Ghahari F, Gao Y, Katoch J, Ishigami M, Moon P and Koshino M 2013 Nature 497 598
[12] Ponomarenko L, Gorbachev R, Yu G, Elias D, Jalil R, Patel A, Mishchenko A, Mayorov A, Woods C and Wallbank J 2013 Nature 497 594
[13] Hunt B, Sanchez-Yamagishi J, Young A, Yankowitz M, LeRoy B J, Watanabe K, Taniguchi T, Moon P, Koshino M and Jarillo Herrero P 2013 Science 340 1427
[14] Bolotin K I, Sikes K J, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H 2008 Solid State Commun. 146 351
[15] Hellerstedt J, Yudhistira I, Edmonds M T, Chang L and Fuhrer M S 2017 Phys. Rev. Mater. 1 054203
[16] Dil J H, Al E, Osterwalder J, Patthey L and Meier F 2009 Phys. Rev. Lett. 103 146401
[17] Sato T, Segawa K, Guo H, Sugawara K and Ando Y 2010 Phys. Rev. Lett. 105 136802
[18] Li X, Zhang F, Niu Q and Feng J 2014 Sci. Rep. 4 6397
[19] Chen Xue Jiao L L, Shen Dezhen 2019 Chin. Phys. B 28 77106
[20] Liu P F, Zhou L J, Tretiak S and Wu L M 2017 J. Mater. Chem. C 5 9181
[21] Wang Z F, Liu Z and Liu F 2013 Nat. Commun. 4 1471
[22] Ma Y, Dai Y, Li X, Sun Q and Huang B 2014 Carbon 73 382
[23] Ma Y, Dai Y, Wei W, Huang B B and Whangbo M H 2014 Sci. Rep. 4 7297
[24] Ishizuka H and Motome Y 2012 Phys. Rev. Lett. 109 237207
[25] Cai T Y, Li X, Wang F, Ju S, Feng J and Gong C D 2015 Nano Lett. 15 6434
[26] Wei L, Zhang X M and Zhao M W 2016 Phys. Chem. Chem. Phys. 18 8059
[27] Ji W X, Zhang B M, Zhang S F, Zhang C W, Ding M, Li P and Wang P J 2017 J. Mater. Chem. C 5 8504
[28] Wu M H, Wang Z J, Liu J W, Li W B, Fu H H, Sun L, Liu X, Pan M H, Weng H M and Dincǎ M 2017 2D Mater. 4 015015
[29] Zhang S J, Zhang C W, Zhang S F, Ji W X, Li P, Wang P J, Li S S and Yan S S 2017 Phys. Rev. B 96 205433
[30] He J, Ma S, Lyu P and Nachtigall P 2016 J. Mater. Chem. C 4 2518
[31] Liu Z F, Liu J Y and Zhao J J 2017 Nano Res. 10 1972
[32] Ji W X, Zhang B M, Zhang S F, Zhang C W, Ding M, Wang P J and Zhang R Q 2018 Nanoscale 10 13645
[33] Sun Q L and Kioussis N 2018 Phys. Rev. B 97 094408
[34] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[35] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[36] Perdew J P, Burke K and Ernzerhof M 1998 Phys. Rev. Lett. 80 891
[37] Parlinski K, Li Z and Kawazoe Y 1997 Phys. Rev. Lett. 78 4063
[38] Nosé S 1984 J. Chem. Phys. 81 511
[39] Song L L, Zhang L Z, Guan Y R, Lu J C, Yan C X and Cai J M 2019 Chin. Phys. B 28 037101
[40] Liu P F, Zhou L, Frauenheim T and Wu L M 2016 Phys. Chem. Chem. Phys. 18 30379
[41] Zhang S L, Xie M Q, Li F Y, Yan Z, Li Y F, Kan E J, Liu W, Chen Z F and Zeng H B 2016 Angew. Chem. 55 1666
[42] Pumera M and Sofer Z 2017 Adv. Mater. 29 1605299
[43] Liu Z R, Chen J H, Wang S B, Yuan D W, Yin M J and Wu C L 2011 Acta Mater. 59 7396
[44] Wolverton C and Ozoliņš V 2006 Phys. Rev. B 73 144104
[45] Savin A, Nesper R, Wengert S and Fässler T F 1997 Angew. Chem. 36 1808
[46] Wang C, Zhou X, Pan Y, Qiao J, Kong X, Kaun C C and Ji W 2018 Phys. Rev. B 97 245409
[47] Javey A, Guo J, Farmer D B, Wang Q, Wang D, Gordon R G, Lundstrom M and Dai H 2004 Nano Lett. 4 447
[1] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[2] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[3] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[4] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[5] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[6] Surface-regulated triangular borophene as Dirac-like materials from density functional calculation investigation
Wenyu Fang(方文玉), Wenbin Kang(康文斌), Jun Zhao(赵军), Pengcheng Zhang(张鹏程). Chin. Phys. B, 2020, 29(9): 096301.
[7] Raman and infrared spectra of complex low energy tetrahedral carbon allotropes from first-principles calculations
Hui Wang(王翚), Ze-Yu Zhang(张泽宇), Xiao-Wu Cai(蔡小五), Zi-Han Liu(刘子晗), Yong-Xiang Zhang(张永翔), Zhen-Long Lv(吕珍龙), Wei-Wei Ju(琚伟伟), Hui-Hui Liu(刘汇慧), Tong-Wei Li(李同伟), Gang Liu(刘钢), Hai-Sheng Li(李海生), Hai-Tao Yan(闫海涛), Min Feng(冯敏). Chin. Phys. B, 2020, 29(9): 093601.
[8] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[9] Giant interface spin-orbit torque in NiFe/Pt bilayers
Shu-Fa Li(李树发), Tao Zhu(朱涛). Chin. Phys. B, 2020, 29(8): 087102.
[10] Transparently manipulating spin-orbit qubit via exact degenerate ground states
Kuo Hai(海阔), Wenhua Zhu(朱文华), Qiong Chen(陈琼), Wenhua Hai(海文华). Chin. Phys. B, 2020, 29(8): 083203.
[11] Electromagnetic field of a relativistic electron vortex beam
Changyong Lei(雷长勇), Guangjiong Dong(董光炯). Chin. Phys. B, 2020, 29(8): 084102.
[12] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[13] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[14] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[15] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
No Suggested Reading articles found!