Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 074209    DOI: 10.1088/1674-1056/ab9432
Special Issue: SPECIAL TOPIC — Ultracold atom and its application in precision measurement
TOPICAL REVIEW—Ultracold atom and its application in precision measurement Prev   Next  

Progress on the 40Ca+ ion optical clock

Baolin Zhang(张宝林)1,2,3, Yao Huang(黄垚)1,2, Huaqing Zhang(张华青)1,2,3, Yanmei Hao(郝艳梅)1,2,3, Mengyan Zeng(曾孟彦)1,2,5, Hua Guan(管桦)1,2, Kelin Gao(高克林)1,2,4
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences(CAS), Wuhan 430071, China;
2 Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
3 University of Chinese Academy of Sciences, Beijing 100049, China;
4 Center for Cold Atom Physics, Chinese Academy of Sciences, Wuhan 430071, China;
5 Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  Progress of the 40Ca+ ion optical clock based on the 42S1/2-3d 2D5/2 electric quadrupole transition is reported. By setting the drive frequency to the “magic” frequency Ω0, the frequency uncertainty caused by the scalar Stark shift and second-order Doppler shift induced by micromotion is reduced to the 10-19 level. By precisely measuring the differential static scalar polarizability △α0, the uncertainty due to the blackbody radiation (BBR) shift (coefficient) is reduced to the 10-19 level. With the help of a second-order integrating servo algorithm, the uncertainty due to the servo error is reduced to the 10-18 level. The total fractional uncertainty of the 40Ca+ ion optical clock is then improved to 2.2×10-17, whereas this value is mainly restricted by the uncertainty of the BBR shift due to temperature fluctuations. The state preparation is introduced together with improvements in the pulse sequence, and furthermore, a better signal to noise ratio (SNR) and less dead time are achieved. The clock stability of a single clock is improved to 4.8×10-15/√τ (in seconds).
Keywords:  40Ca+ ion optical clocks      “magic” drive frequency      frequency uncertainty      frequency stability  
Received:  16 March 2020      Revised:  18 May 2020      Accepted manuscript online: 
PACS:  42.62.Fi (Laser spectroscopy)  
  37.10.Ty (Ion trapping)  
  95.55.Sh (Auxiliary and recording instruments; clocks and frequency standards)  
  06.20.-f (Metrology)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304401, 2018YFA0307500, 2017YFA0304404, and 2017YFF0212003), the National Natural Science Foundation of China (Grant Nos. 11622434, 11774388, 11634013, 11934014, and 91736310), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100), the CAS Youth Innovation Promotion Association (Grant Nos. Y201963 and 2018364), and the Science Fund for Distinguished Young Scholars of Hubei Province, China (Grant No. 2017CFA040).
Corresponding Authors:  Hua Guan, Kelin Gao     E-mail:  guanhua@wipm.ac.cn;klgao@wipm.ac.cn

Cite this article: 

Baolin Zhang(张宝林), Yao Huang(黄垚), Huaqing Zhang(张华青), Yanmei Hao(郝艳梅), Mengyan Zeng(曾孟彦), Hua Guan(管桦), Kelin Gao(高克林) Progress on the 40Ca+ ion optical clock 2020 Chin. Phys. B 29 074209

[1] Barwood G P, Huang G, Klein H A, Johnson L A M, King S A, Margolis H S, Szymaniec K and Gill P 2014 Phys. Rev. A 89 050501
[2] Chou C W, Hume D B, Koelemeij J C J, Wineland D J and Rosenband T 2010 Phys. Rev. Lett. 104 070802
[3] Dubé P, Madej A A, Tibbo M and Bernard J E 2014 Phys. Rev. Lett. 112 173002
[4] Huntemann N, Sanner C, Lipphardt B, Tamm C and Peik E 2016 Phys. Rev. Lett. 116 063001
[5] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science 319 1808
[6] Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah Oppong N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J and Ye J 2017 Science 358 90
[7] Campbell S L, Hutson R B, Marti G E, Goban A, Darkwah Oppong N, McNally R L, Sonderhouse L, Robinson J M, Zhang W, Bloom B J and Ye J 2017 Science 358 90
[8] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature 564 87
[9] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun. 6 6896
[10] Ushijima I, Takamoto M, Das M, Ohkubo T and Katori H 2015 Nat. Photon. 9 185
[11] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
[12] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U and Ye J 2019 Nat. Photon. 13 714
[13] Guan H, Huang Y, Liu P L, Bian W, Shao H and Gao K L 2015 Chin. Phys. B 24 054213
[14] Dubé P, Madej A A, Zhou Z and Bernard J E 2013 Phys. Rev. A 87 023806
[15] Huang Y, Guan H, Zeng M, Tang L and Gao K 2019 Phys. Rev. A 99 011401
[16] Peik E, Schneider T and Tamm C 2006 J. Phys. B: At. Mol. Opt. Phys. 39 145
[17] Bian W, Huang Y, Guan H, Liu P, Ma L and Gao K 2016 Rev. Sci. Instrum. 87 063121
[18] Huang Y, Guan H, Bian W, Ma L, Liang K, Li T and Gao K 2017 Appl. Phys. B 123 166
[19] Dubé P, Madej A A, Shiner A and Jian B 2015 Phys. Rev. A 92 042119
[20] Zeng M Y, Huang Y, Shao H, Wang M, Zhang H Q, Zhang B L, Guan H and Gao K L 2018 Chin. Phys. Lett. 35 074202
[21] Huang Y, Guan H, Liu P, Bian W, Ma L, Liang K, Li T and Gao K 2016 Phys. Rev. Lett. 116 013001
[22] Itano W M, Bergquist J C, Bollinger J J, Gilligan J M, Heinzen D J, Moore F L, Raizen M G and Wineland D J 1993 Phys. Rev. A 47 3554
[23] Berkeland D J, Miller J D, Bergquist J C, Itano W M and Wineland D J 1998 J. Appl. Phys. 83 5025
[24] Shao H, Huang Y, Guan H, Qian Y and Gao K 2016 Phys. Rev. A 94 042507
[25] Arora B, Safronova M S and Clark C W 2007 Phys. Rev. A 76 064501
[26] Mitroy J, Safronova M S and Clark C W 2010 J. Phys. B: At. Mol. Opt. Phys. 43 202001
[27] Safronova M S and Safronova U I 2011 Phys. Rev. A 83 012503
[28] Barwood G P, Huang G, King S A, Klein H A and Gill P 2015 J. Phys. B: At. Mol. Opt. Phys. 48 035401
[29] Huang Y, Liu Q, Cao J, Ou B, Liu P, Guan H, Huang X and Gao K 2011 Phys. Rev. A 84 053841
[30] Dubé P, Madej A A, Bernard J E, Marmet L, Boulanger J S and Cundy S 2005 Phys. Rev. Lett. 95 033001
[31] Shao H, Huang Y, Guan H, Li C, Shi T and Gao K 2017 Phys. Rev. A 95 053415
[1] Suppression of servo error uncertainty to 10-18 level using double integrator algorithm in ion optical clock
Jin-Bo Yuan(袁金波), Jian Cao(曹健), Kai-Feng Cui(崔凯枫), Dao-Xin Liu(刘道信), Yi Yuan(袁易), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2021, 30(7): 070305.
[2] Ramsey-coherent population trapping Cs atomic clock based on lin||lin optical pumping with dispersion detection
Peng-Fei Cheng(程鹏飞), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2019, 28(7): 070601.
[3] Development of the integrated integrating sphere cold atom clock
Ming-Yuan Yu(于明圆), Yan-Ling Meng(孟艳玲), Mei-Feng Ye(叶美凤), Xin Wang(王鑫), Xin-Chuan Ouyang(欧阳鑫川), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hua-Dong Cheng(成华东), Liang Liu(刘亮). Chin. Phys. B, 2019, 28(7): 070602.
[4] Broad bandwidth interference filter-stabilized external cavity diode laser with narrow linewidth below 100 kHz
Guan-Zhong Pan(潘冠中), Bao-Lu Guan(关宝璐), Chen Xu(徐晨), Peng-Tao Li(李鹏涛), Jia-Wei Yang(杨嘉炜), Zhen-Yang Liu(刘振杨). Chin. Phys. B, 2018, 27(1): 014204.
[5] Recent improvements on the atomic fountain clock at SIOM
Du Yuan-Bo (杜远博), Wei Rong (魏荣), Dong Ri-Chang (董日昌), Zou Fan (邹凡), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2015, 24(7): 070601.
[6] Ramsey-CPT spectrum with the Faraday effect and its application to atomic clocks
Tian Yuan (田原), Tan Bo-Zhong (谭伯仲), Yang Jing (杨晶), Zhang Yi (张奕), Gu Si-Hong (顾思洪). Chin. Phys. B, 2015, 24(6): 063302.
[7] Stable 85Rb micro vapour cells: fabrication based on anodic bonding and application in chip-scale atomic clocks
Su Juan(苏娟), Deng Ke(邓科), Guo Deng-Zhu(郭等柱), Wang Zhong(汪中), Chen Jing(陈兢), Zhang Geng-Min(张耿民), and Chen Xu-Zong(陈徐宗). Chin. Phys. B, 2010, 19(11): 110701.
No Suggested Reading articles found!