Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 084501    DOI: 10.1088/1674-1056/ab9293
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A new car-following model with driver's anticipation effect of traffic interruption probability

Guang-Han Peng(彭光含)
College of Physical Science and Technology, Guangxi Normal University, Guilin 541004, China
Abstract  Traffic interruption phenomena frequently occur with the number of vehicles increasing. To investigate the effect of the traffic interruption probability on traffic flow, a new optimal velocity model is constructed by considering the driver anticipation term in the interruption case for car-following theory. Furthermore, the effect of driver anticipation in the interruption case is investigated via linear stability analysis. Also, the MKdV equation is obtained concerning the effect of driver anticipation in the interruption case. Moreover, numerical simulation states that the driver anticipation term in the interruption case contributes to the stability of traffic flow.
Keywords:  traffic flow      interruption probability      optimal velocity model      numerical simulation  
Received:  05 April 2020      Revised:  30 April 2020      Accepted manuscript online: 
PACS:  45.70.Vn (Granular models of complex systems; traffic flow)  
  05.70.Fh (Phase transitions: general studies)  
  05.70.Jk (Critical point phenomena)  
  89.40.-a (Transportation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61963008 and 61673168), the Natural Science Foundation of Guangxi Zhuang Autonomous Region, China (Grant No. 2018GXNSFAA281274), the Doctor Scientific Research Startup Project Foundation of Guangxi Normal University, China (Grant No. 2018BQ007), and the Innovation-Driven Development Special Fund Project of Guangxi Zhuang Autonomous Region, China (Grant No. GUIKEAA19254034).
Corresponding Authors:  Guang-Han Peng     E-mail:  pengguanghan@163.com

Cite this article: 

Guang-Han Peng(彭光含) A new car-following model with driver's anticipation effect of traffic interruption probability 2020 Chin. Phys. B 29 084501

[1] Wong S C, Leung B S Y, Loo B P Y, Hung W T and Lo H K 2004 Accid. Anal. Prev. 36 281
[2] Wong S C, Sze N N and Li Y C 2007 Accid. Anal. Prev. 39 1107
[3] Sze N N and Wong S C 2007 Accid. Anal. Prev. 39 1267
[4] Telesca L and Lovallo M 2008 Physica A 387 3299
[5] BaykalG ürsoy M, Xiao W and Ozbay K 2009 Eur. J. Oper. Res. 195 127
[6] Tang T Q, Huang H J and Xu G 2008 Physica A 387 6845
[7] Tian C and Sun D H 2010 Chin. Phys. B 19 120501
[8] Tang T Q, Huang H J, Wong S C and Jiang R 2009 Chin. Phys. B 18 0975
[9] Newell G F 1961 Oper. Res. 9 209
[10] Bando M, Hasebe K, Nakyaama A, Shibata A and Sugiyama Y 1995 Phys. Rev. E 51 1035
[11] Hayakawa H and Nakanishi K 1998 Prog. Theor. Phys. Suppl. 130 57
[12] Nagatani T 1999 Phys. Rev. E 60 6395
[13] Nagatani T 2002 Rep. Progr. Phys. 65 1331
[14] Lenz H and Wagner C K 1999 Eur. Phys. J. B 7 331
[15] Hasebe K, Nakayama A and Sugiyama Y 2003 Phys. Rev. E 68 026102
[16] Sawada S 2002 Int. J. Mod. Phys. C 13 1
[17] Wagner C K 1998 Physica A 260 218
[18] Helbing D, Tilch B 1998 Phys. Rev. E 58 133
[19] Jiang R, Wu Q S and Zhu Z J 2001 Phys. Rev. E 64 017101
[20] Ge H X, Dai S Q, Dong L Y and Xue Y 2004 Phys. Rev. E 70 066134
[21] Ge H X, Dai S Q, Xue Y and Dong L Y 2005 Phys. Rev. E 71 066119
[22] Cheng R J, Ge H X and Wang J F 2017 Phys. Lett. A 381 1302
[23] Song H, Ge H X, Chen F Z and Cheng R J 2017 Nonlinear Dyn. 87 1809
[24] Zhao X M and Gao Z Y 2005 Eur. Phys. J. B 47 145
[25] Sawada S 2006 Int. J. Mod. Phys. C 17 65
[26] Tang T Q, Yi Z Y, Zhang J, Wang T and Leng J Q 2018 Physica A 496 399
[27] Ou H and Tang T Q 2018 Physica A 495 260
[28] Tang T Q, Wang T, Chen L and Huang H J 2018 Physica A 490 451
[29] Zhu W X and Zhang H M 2018 Physica A 496 274
[30] Zhu W X and Zhang L D 2018 Physica A 492 2154
[31] Zhu W X and Yu R L 2012 Commun. Theor. Phys. 57 301
[32] Meng X P, Li Z P and Ge H X 2014 Commun. Theor. Phys. 61 636
[33] Li Z P, Li W Z, Xu S Z and Qian Y Q 2015 Nonlinear Dyn. 80 529
[34] Li Z P, Zhang R, Xu S Z and Qian Y Q 2015 Commun. Nonlinear Sci. Numer. Simul. 24 52
[35] Ngoduy D 2013 Commun. Nonlinear Sci. Numer. Simul. 18 2699
[36] Ngoduy D 2014 Nonlinear Dyn. 77 289
[37] Ngoduy D 2009 Phys. Scr. 80 025802
[38] Ngoduy D 2014 Comput. Aided Civ. Inf. Eng. 29 248
[39] Redhu P and Gupta A K 2014 Nonlinear Dyn. 78 957
[40] Gupta A K and Redhu P 2014 Nonlinear Dyn. 76 1001
[41] Redhu P and Gupta A K 2015 Physica A 421 249
[42] Gupta A K and Redhu P 2013 Phys. Lett. A 377 2027
[43] Redhu P and Gupta A K 2016 Physica A 445 150
[44] Gupta A K and Redhu P 2013 Physica A 392 5622
[45] Sharma S 2015 Physica A 421 401
[46] Sharma S 2015 Nonlinear Dyn. 81 991
[47] Gupta A K and Redhu P 2014 Commun. Nonlinear Sci. Numer. Simul. 19 1600
[48] Zhang G, Sun D H, Liu H and Chen D 2017 Physica A 486 806
[49] Yu S W, Fu R, GuoY S, Xin Q and Shi Z K 2019 Physica A 531 121789
[1] Effect of pressure and space between electrodes on the deposition of SiNxHy films in a capacitively coupled plasma reactor
Meryem Grari, CifAllah Zoheir, Yasser Yousfi, and Abdelhak Benbrik. Chin. Phys. B, 2021, 30(5): 055205.
[2] Numerical simulation of super-continuum laser propagation in turbulent atmosphere
Ya-Qian Li(李雅倩), Wen-Yue Zhu (朱文越), and Xian-Mei Qian(钱仙妹). Chin. Phys. B, 2021, 30(3): 034201.
[3] Modeling and analysis of car-following behavior considering backward-looking effect
Dongfang Ma(马东方), Yueyi Han(韩月一), Fengzhong Qu(瞿逢重), and Sheng Jin(金盛). Chin. Phys. B, 2021, 30(3): 034501.
[4] Numerical research on effect of overlap ratio on thermal-stress behaviors of the high-speed laser cladding coating
Xiaoxi Qiao(乔小溪), Tongling Xia(夏同领), and Ping Chen(陈平). Chin. Phys. B, 2021, 30(1): 018104.
[5] Synchronization mechanism of clapping rhythms in mutual interacting individuals
Shi-Lan Su(苏世兰), Jing-Hua Xiao(肖井华), Wei-Qing Liu(刘维清), and Ye Wu(吴晔). Chin. Phys. B, 2021, 30(1): 010505.
[6] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[7] Numerical simulation on ionic wind in circular channels
Gui-Wen Zhang(张桂文), Jue-Kuan Yang(杨决宽), and Xiao-Hui Lin(林晓辉). Chin. Phys. B, 2021, 30(1): 014701.
[8] Droplets breakup via a splitting microchannel
Wei Gao(高崴), Cheng Yu(于程), Feng Yao(姚峰). Chin. Phys. B, 2020, 29(5): 054702.
[9] Electron beam irradiation on novel coronavirus (COVID-19): A Monte-Carlo simulation
Guobao Feng(封国宝), Lu Liu(刘璐), Wanzhao Cui(崔万照), Fang Wang(王芳). Chin. Phys. B, 2020, 29(4): 048703.
[10] Multi-bubble motion behavior of uniform magnetic field based on phase field model
Chang-Sheng Zhu(朱昶胜), Zhen Hu(胡震), Kai-Ming Wang(王凯明). Chin. Phys. B, 2020, 29(3): 034702.
[11] Interface coupling effects of weakly nonlinear Rayleigh-Taylor instability with double interfaces
Zhiyuan Li(李志远), Lifeng Wang(王立锋), Junfeng Wu(吴俊峰), Wenhua Ye(叶文华). Chin. Phys. B, 2020, 29(3): 034704.
[12] The second Hopf bifurcation in lid-driven square cavity
Tao Wang(王涛), Tiegang Liu(刘铁钢), Zheng Wang(王正). Chin. Phys. B, 2020, 29(3): 030503.
[13] A new cellular automaton model accounting for stochasticity in traffic flow induced by heterogeneity in driving behavior
Xiaoyong Ni(倪晓勇), Hong Huang(黄弘). Chin. Phys. B, 2019, 28(9): 098901.
[14] Direct numerical simulation on relevance of fluctuating velocities and drag reduction in turbulent channel flow with spanwise space-dependent electromagnetic force
Dai-Wen Jiang(江代文), Hui Zhang(张辉), Bao-Chun Fan(范宝春), An-Hua Wang(王安华). Chin. Phys. B, 2019, 28(5): 054701.
[15] Numerical simulation on dynamic behaviors of bubbles flowing through bifurcate T-junction in microfluidic device
Liang-Yu Wu(吴梁玉), Ling-Bo Liu(刘凌波), Xiao-Tian Han(韩笑天), Qian-Wen Li(李倩文), Wei-Bo Yang(杨卫波). Chin. Phys. B, 2019, 28(10): 104702.
No Suggested Reading articles found!