Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 087802    DOI: 10.1088/1674-1056/ab9291
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures

Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁)
School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China
Abstract  The linear and nonlinear optical absorption coefficients (ACs) and refraction index changes (RICs) of 1s-1p, 1p-1d, and 1f-1d transitions are investigated in a wurtzite InxGa1-xN/GaN core-shell quantum dot (CSQD) with donor impurity by using density matrix approach. The effects of built-in electric field (BEF), ternary mixed crystal (TMC), impurity, and CSQD size are studied in detail. The finite element method is used to calculate the ground and excited energy state energy and wave function. The results reveal that the BEF has a great influence on the linear, nonlinear, and total ACs and RICs. The presence of impurity leads the resonant peaks of the ACs and RICs to be blue-shifted for all transitions, especially for 1s-1p transition. It is also found that the resonant peaks of the ACs and RICs present a red shift with In-composition decreasing or core radius increasing. Moreover, the amplitudes of the ACs and RICs are strongly affected by the incident optical intensity. The absorption saturation is more sensitive without the impurity than with the impurity, and the appearance of absorption saturation requires a larger incident optical intensity when considering the BEF.
Keywords:  core-shell quantum dot      linear and nonlinear optical properties      impurity      ternary mixed crystal  
Received:  08 March 2020      Revised:  04 May 2020      Published:  05 August 2020
PACS:  78.67.Hc (Quantum dots)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
  42.65.-k (Nonlinear optics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11947414) and the Research Program of Science and Technology at University of Inner Mongolia Autonomous Region, China (Grant No. NJZZ19001).
Corresponding Authors:  Yan Xing     E-mail:  xingy@imu.edu.cn

Cite this article: 

Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁) Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures 2020 Chin. Phys. B 29 087802

[1] Ji L W, Su Y K, Chang S J, Liu S H, Wang C K, Tsai S T, Fang T H, Wu L W and Xue Q K 2003 Solid-State Electron. 47 1753
[2] Yu J S, Slivken S, Evans A, David J and Razeghi M 2003 Appl. Phys. Lett. 82 3397
[3] Zhao F, Lv X, Majumdar A and Shi Z 2004 Appl. Phys. Lett. 84 1251
[4] Ji L W, Young S J, Liu C H, Water W, Meen T H and Jywe W Y 2008 J. Cryst. Growth 310 2476
[5] Asgari A and Razi S 2010 Opt. Express 18 14604
[6] Yanover D, Čapek R K, Brusilovski A R, Vaxenburg R, Grumbach N, Maikov G I, Solomeshch O, Sashchiuk A and Lifshitz E 2012 Chem. Mater. 24 4417
[7] Jahangir S, Pietzonka I, Strassburg M and Bhattacharya P 2014 Appl. Phys. Lett. 105 111117
[8] Tsai C L 2016 J. Lumin. 174 36
[9] Zhang L, Teng C H, Ku P C and Deng H 2016 Appl. Phys. Lett. 108 153102
[10] Saravanamoorthy S N, Peter A J and Lee C W 2017 Chem. Phys. 483-484 1
[11] Wu Q Q, Cao F, Kong L M and Yang X Y 2019 Chin. Phys. B 28 118103
[12] Damilano B, Grandjean N, Dalmasso S and Massies J 1999 Appl. Phys. Lett. 75 3751
[13] Lu L L, Xie W F and Hassanabadi H 2011 J. Appl. Phys. 109 063108
[14] Yakar Y, Çakır B and Özmen A 2010 Opt. Commun. 283 1795
[15] Cristea M, Radu A and Niculescu E C 2013 J. Lumin. 143 592
[16] She Y C, Luo T T, Zhang W X, Ran M W and Wang D L 2016 Chin. Phys. B 25 014202
[17] Jani O, Ferguson I, Honsberg C and Kurtz S 2007 Appl. Phys. Lett. 91 132117
[18] Gorji N E, Movla H, Sohrab F, Hosseinpour A, Rezaei M and Babaei H 2010 Physica E 42 2353
[19] Ren Z W, Chao L, Chen X, Zhao B J, Wang X F, Tong J H, Zhang J, Zhuo X J, Li D W, Yi H X and Li S T 2013 Opt. Express 21 7118
[20] Movla H 2016 Optik 127 4799
[21] Afkir N B, Feddi E, Dujardin F, Zazoui M and Meziane J 2018 Physica B 534 10
[22] Shi J J and Gan Z Z 2003 J. Appl. Phys. 94 407
[23] Shi J J, Xia C X, Wei S Y and Liu Z X 2005 J. Appl. Phys. 97 083705
[24] Zhang M and Shi J J 2011 Superlattices Microstruct. 50 529
[25] Ghazi H E and Peter A J 2015 Physica B 470-471 64
[26] Guo L C, Wang X L, Xiao H L and Wang B Z 2007 J. Cryst. Growth 298 522
[27] Chi Y M and Shi J J 2008 J. Lumin. 128 1836
[28] Xia C X and Wei S Y 2005 Phys. Lett. A 346 227
[29] Xia C X and Wei S Y 2006 Phys. Lett. A 359 161
[30] Özmen A, Yakar Y, Çakı r B and Atav U 2009 Opt. Commun. 282 3999
[31] Çakı r B, Yakar Y and Özmen A 2012 J. Lumin. 132 2659
[32] Ortakaya S, Kirak M and Guldeste A 2017 J. Nonlinear Opt. Phys. Mater. 26 1750035
[33] Kavruk A E, Sahin M and Koc F 2013 J. Appl. Phys. 114 183704
[34] Zhang L, Yu Z, Yao W, Liu Y and Ye H 2010 Superlattices Microstruct. 48 434
[35] Jbara A S, Othaman Z and Saeed M A 2016 Chin. Phys. B 25 057801
[36] Liu W H, Qu Y and Ban S L 2017 Superlattices Microstruct. 102 373
[37] Cao X M, Liu W H, Yang X C, Qu Y and Xing Y 2019 Mod. Phys. Lett. B 33 1950367
[38] Ghazi H E, Jorio A and Zorkani I 2014 J. Optoelectron. Adv. Mater. 16 1242
[39] Ambacher O, Majewski J, Miskys C, Link A, Hermann M, Eickhoff M, Stutzmann M, Bernardini F, Fiorentini V, Tilak V, Schaff B and Eastman L F 2002 J. Phys.:Condens. Matter 14 3399
[40] Wu J, Walukiewicz W, Yu K M, Ager J W, Haller E E, Lu H and Schaff W J 2002 Appl. Phys. Lett. 80 4741
[41] Wu J Q 2009 J. Appl. Phys. 106 011101
[42] Rezaei G, Vahdani M R K and Vaseghi B 2011 Physica B 406 1488
[1] Exact solution of a topological spin ring with an impurity
Xu-Chu Huang(黄旭初), Yi-Hua Song(宋艺华), Yi Sun(孙毅). Chin. Phys. B, 2020, 29(6): 067501.
[2] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[3] Optical and electrical properties of InGaZnON thin films
Jian Ke Yao(姚建可), Fan Ye(叶凡), Ping Fan(范平). Chin. Phys. B, 2020, 29(1): 018105.
[4] Impurity-induced Shiba bound state in the BCS-BEC crossover regime of two-dimensional Fermi superfluid
Siqi Shao(邵思齐), Kezhao Zhou(周可召), Zhidong Zhang(张志东). Chin. Phys. B, 2019, 28(7): 070501.
[5] Controllable precision of the projective truncation approximation for Green's functions
Peng Fan(范鹏), Ning-Hua Tong(同宁华). Chin. Phys. B, 2019, 28(4): 047102.
[6] Semi-analytic study on the conductance of a lengthy armchair honeycomb nanoribbon including vacancies, defects, or impurities
Fateme Nadri, Mohammad Mardaani, Hassan Rabani. Chin. Phys. B, 2019, 28(1): 017202.
[7] Effect of nickel segregation on CuΣ9 grain boundary undergone shear deformations
Xiang-Yue Liu(刘湘月), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(6): 063103.
[8] Effect of P impurity on mechanical properties of NiAlΣ5 grain boundary: From perspectives of stress and energy
Xue-Lan Hu(胡雪兰), Ruo-Xi Zhao(赵若汐), Jiang-Ge Deng(邓江革), Yan-Min Hu(胡艳敏), Qing-Gong Song(宋庆功). Chin. Phys. B, 2018, 27(3): 037105.
[9] Electronic structures of impurities and point defects in semiconductors
Yong Zhang(张勇). Chin. Phys. B, 2018, 27(11): 117103.
[10] Synthesis of diamonds in Fe—C systems using nitrogen and hydrogen co-doped impurities under HPHT
Shi-Shuai Sun(孙士帅), Zhi-Hui Xu(徐智慧), Wen Cui(崔雯), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2017, 26(9): 098101.
[11] Validation of the Wiedemann-Franz law in a granular s-wave superconductor in the nanometer scale
A Yousefvand, H Salehi, M Zargar Shoushtari. Chin. Phys. B, 2017, 26(3): 037401.
[12] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[13] Effect of P impurity on NiAlΣ5 grain boundary from first-principles study
Xue-Lan Hu(胡雪兰), Ruo-Xi Zhao(赵若汐), Yang Luo(罗阳), Qing-Gong Song(宋庆功). Chin. Phys. B, 2017, 26(2): 023101.
[14] Photoemission cross section: A critical parameter in the impurity photovoltaic effect
Jiren Yuan(袁吉仁), Haibin Huang(黄海宾), Xinhua Deng(邓新华), Zhihao Yue(岳之浩), Yuping He(何玉平), Naigen Zhou(周耐根), Lang Zhou(周浪). Chin. Phys. B, 2017, 26(1): 018503.
[15] First principle calculations of thermodynamic properties of pure graphene sheet and graphene sheets with Si, Ge, Fe, and Co impurities
A Kheyri, Z Nourbakhsh. Chin. Phys. B, 2016, 25(9): 093102.
No Suggested Reading articles found!