Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077802    DOI: 10.1088/1674-1056/ab928e
Special Issue: SPECIAL TOPIC —Terahertz physics
SPECIAL TOPIC—Terahertz physics Prev   Next  

Broadband strong optical dichroism in topological Dirac semimetals with Fermi velocity anisotropy

J Lim(林镇杰)1, K J A Ooi(黄健安)2,3, C Zhang(涨潮)4, L K Ang(洪礼祺)1, Yee Sin Ang(洪逸欣)4
1 Science, Math and Technology, Singapore University of Technology and Design, Singapore;
2 School of Energy and Chemical Engineering, Xiamen University Malaysia, Selangor Darul Ehsan 43900, Malaysia;
3 College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China;
4 School of Physics, University of Wollongong, Northfields Avenue, New South Wales 2522, Australia
Abstract  Prototypical three-dimensional (3D) topological Dirac semimetals (DSMs), such as Cd3As2 and Na3Bi, contain electrons that obey a linear momentum-energy dispersion with different Fermi velocities along the three orthogonal momentum dimensions. Despite being extensively studied in recent years, the inherent Fermi velocity anisotropy has often been neglected in the theoretical and numerical studies of 3D DSMs. Although this omission does not qualitatively alter the physics of light-driven massless quasiparticles in 3D DSMs, it does quantitatively change the optical coefficients which can lead to nontrivial implications in terms of nanophotonics and plasmonics applications. Here we study the linear optical response of 3D DSMs for general Fermi velocity values along each direction. Although the signature conductivity-frequency scaling, σ(ω)∝ω, of 3D Dirac fermion is well-protected from the Fermi velocity anisotropy, the linear optical response exhibits strong linear dichroism as captured by the universal extinction ratio scaling law, Λij = (vi/vj)2 (where ij denotes the three spatial coordinates x,y,z, and vi is the i-direction Fermi velocity), which is independent of frequency, temperature, doping, and carrier scattering lifetime. For Cd3As2 and Na3Bi3, an exceptionally strong extinction ratio larger than 15 and covering a broad terahertz window is revealed. Our findings shed new light on the role of Fermi velocity anisotropy in the optical response of Dirac semimetals and open up novel polarization-sensitive functionalities, such as photodetection and light modulation.
Keywords:  topological Dirac semimetal      optical anisotropy      linear dichroismn      linear response theory  
Received:  15 April 2020      Revised:  07 May 2020      Published:  05 July 2020
PACS:  78.20.-e (Optical properties of bulk materials and thin films)  
  78.20.Bh (Theory, models, and numerical simulation)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity))  
Fund: Project supported by Singapore Ministry of Education (MOE) Tier 2 Grant No. (2018-T2-1-007) and USA ONRG Grant No. (N62909-19-1-2047). JL is supported by MOE PhD RSS. KJAO acknowledges the funding support of Xiamen University Malaysia Research Fund, Grant Nos. XMUMRF/2019-C3/IECE/0003 and XMUMRF/2020-C5/IENG/0025, and the Ministry of Higher Education Malaysia under the Fundamental Research Grant No. Scheme, Grant No. FRGS/1/2019/TK08/XMU/02. CZ acknowledges the funding support by the Australian Research Council (Grant No. DP160101474).
Corresponding Authors:  L K Ang, Yee Sin Ang     E-mail:  ricky_ang@sutd.edu.sg;yeesin_ang@sutd.edu.sg

Cite this article: 

J Lim(林镇杰), K J A Ooi(黄健安), C Zhang(涨潮), L K Ang(洪礼祺), Yee Sin Ang(洪逸欣) Broadband strong optical dichroism in topological Dirac semimetals with Fermi velocity anisotropy 2020 Chin. Phys. B 29 077802

[1] Koppens F H L, Chang D E and García de Abajo F J 11 3370
[2] García de Abajo F J 2014 ACS Photon. 1 135
[3] Chen J, Badioli M, Alonso-González P, Thongrattanasiri S, Huth F, Osmond J, Spasenović M, Centeno A, Pesquera A, Godignon P, Elorza A Z, Camara N, García de Abajo F J, Hillenbrand R and Koppens F H L 2012 Nature 487 77
[4] Fei Z, Rodin A S, Andreev G O, Bao W, McLeod A S, Wagner M, Zhang L M, Zhao Z, Thiemens M, Dominguez G, Fogler M M, Castro Neto A H, Lau C N, Keilmann F and Basov D N 2012 Nature 487 82
[5] Sanderson M, Ang Y S, Gong S, Zhao T, Hu M, Zhong R, Chen X, Zhang P, Zhang C and Liu S 2015 Appl. Phys. Lett. 107 203113
[6] Wright A R, Xu X G, Cao J C and Zhang C 2009 Appl. Phys. Lett. 95 072101
[7] Ishikawa K L 2010 Phys. Rev. B 82 201402
[8] Marini A, Cox J D and García de Abajo F J 2017 Phys. Rev. B 95 125408
[9] Mikhailov S A 2007 Europhys. Lett. 79 27002
[10] Hendry E, Hale P J, Moger J, Savchenko A K and Mikhailov S A 2010 Phys. Rev. Lett. 105 097401
[11] Huang S, Tran M H, Zuber J, Wang Q, Zhu Y and Zhang C 2019 J. Opt. Soc. Am. B 36 200
[12] Chen Q, Ang Y S, Lewis R A, Wang X and Zhang C 2012 Appl. Phys. Lett. 101 211109
[13] Ang Y S, Chen Q and Zhang C 2015 Front. Optoelectron. 8 3
[14] Ang Y S and Zhang C 2012 J. Phys. D: Appl. Phys. 45 395303
[15] Shareef S, Ang Y S and Zhang C 2012 J. Opt. Soc. Am. B 29 274
[16] Ang Y S, Sultan S and Zhang C 2010 Appl. Phys. Lett. 97 243110
[17] Wong, L J, Kaminer I, Ilic O, Joannopoulos J D and Soljačić M 2016 Nat. Photon. 10 46
[18] Rosolen G, Wong L J, Rivera N, Maes B, Soljačić M and Kaminer I 2018 Light Sci. Appl. 7 64
[19] Cox J D, Marini A and García de Abajo F J 2017 Nat. Commun. 8 1
[20] Yoshikawa N, Tamaya T and Tanaka K 2017 Science 356 736
[21] Hafez H A, Kovalev S, Deinert J C, Mics Z, Green B, Awari N, Chen Min, Germanskiy S, Lehnert U, Teichert J, Wang Z, Tielrooij K J, Liu Z, Chen Z, Narita A, Müllen K, Bonn M, Gensch M and Turchinovich D 2018 Nature 561 507
[22] Lee C H, Zhang X and Guan B 2015 Sci. Rep. 5 18008
[23] Zhang K C, Chen X X, Sheng C J, Ooi K J A, Ang L K and Yuan X S 2017 Opt. Express 25 20477
[24] Sun Z, Hasan T, Torrisi F, Popa D, Privitera D, Wang F, Bonaccorso F, Basko D M and Ferrari A C 2010 ACS Nano 4 803
[25] Popa D, Sun Z, Torrisi F, Hasan T, Wang F and Ferrari A C 2010 Appl. Phys. Lett. 97 203106
[26] Bao Q, Zhang H, Wang Y, Ni Z, Yan Y, Zhen Z X, Loh K P and Tang D Y 2009 Adv. Funct. Mater. 19 3077
[27] Zhang M, Kelleher E J R, Torrisi F, Sun Z, Hasan T, Popa D, Wang F, Ferrari A C, Popov S V and Taylor J R 2012 Opt. Express 20 25077
[28] Burkov A A 2016 Nat. Mater. 15 1145
[29] Wang Z, Sun Y, Chen X Q, Franchini C, Xu G, Weng H, Dai X and Fang Z 2012 Phys. Rev. B 85 195320
[30] Yang B J and Nagaosa N 2014 Nat. Commun. 5 4898
[31] Murakami S, Iso S, Avishai Y, Onoda M and Nagaosa N 2007 Phys. Rev. B 76 205304
[32] Murakami S 2007 New Journ. Phys. 9 356
[33] Murakami S and Kuga S 2008 Phys. Rev. B 78 165313
[34] Xu S Y, Xia Y, Wray L A, Jia S, Meier F, Dil J H, Osterwalder J, Slomski B, Bansil A, Lin H, Cava R J and Hasan M Z 2011 Science 332 560
[35] Sato T, Segawa K, Kosaka K, Souma S, Nakayama K, Eto K, Minami T, Ando Y and Takahashi T 2011 Nat. Phys. 7 840
[36] Zhang W, Yu R, Zhang H J, Dai X and Fang Z 2010 New Journ. Phys. 12 065013
[37] Weng Hongming, Dai Xi and Fang Z 2014 Phys. Rev. X 4 011002
[38] Young S M, Zaheer S, Teo J C Y, Kane C L, Mele E J and Rappe A M 2012 Phys. Rev. Lett. 108 140405
[39] Steinberg J A, Young S M, Zaheer S, Kane C L, Mele E J and Rappe A M 2014 Phys. Rev. Lett. 112 036403
[40] Liu Z K, Jiang J, Zhou B, Wang Z J, Zhang Y, Weng H M, Prabhakaran D, Mo S K, Peng H, Dudin P, Kim T, Hoesch M, Fang Z, Dai X, Shen Z X, Feng D L, Hussain Z and Chen Y L 2014 Nat. Mater. 13 677
[41] Neupane M, Xu S, Sankar R, Alidoust N, Bian G, Liu C and Belopolski I 2014 Nat. Commun. 5 3786
[42] Borisenko S, Gibson Q, Evtushinsky D, Zabolotnyy V, Büchner B and Cava R J 2014 Phys. Rev. Lett. 113 027603
[43] Liang A, Chen C, Wang Z, Shi Y, Feng Y, Yi H, Xie Z, He S, He J, Peng Y, Liu Y and Liu D 2016 Chin. Phys. B 25 77101
[44] Liu Z K, Zhou B, Zhang Y, Wang Z J, Weng H M, Prabhakaran D, Mo S K, Shen Z X, Fang Z, Dai X, Hussain Z and Chen Y L 2014 Science 343 864
[45] Ooi K J A, Ang Y S, Zhai Q Tan D T H, Ang L K and Ong C K 2019 APL Photon. 4 034402
[46] Yang Y K, Xiu F X, Wang F Q, Wang J and Shi Y 2019 Chin. Phys. B 28 107502
[47] Wang H and Wang J 2018 Chin. Phys. B 27 107402
[48] Song H D, Sheng D, Wang A Q, Li J G, Yu D P and Liao Z M 2017 Chin. Phys. B 26 37301
[49] Zhu C, Wang F, Meng Y, Yuan X, Xiu F, Luo H, Wang Y, Li J, Lv X, He L, Xu Y, Liu J, Zhang C, Shi Y, Zhang R and Zhu S 2017 Nat. Commun. 8 14111
[50] Wang Q, Li C Z, Ge S, Li J G, Lu W, Lai J, Liu X, Ma J, Yu D P, Liao Z M and Sun D 2017 Nano Lett. 17 834
[51] Meng Y, Zhu C, Li Y, Yuan X, Xiu F, Shi Y, Xu Y and Wang F 2018 Opt. Lett. 43 1503
[52] Pan H, Wu M and Yang S A 2015 Sci. Rep. 5 14639
[53] Cheng B, Kanda N, Ikeda T N, Matsuda T, Xia P, Schumann T, Stemmer S, Itatani J, Armitage N P and Matsunaga R 2020 Phys. Rev. Lett. 124 117402
[54] Kovalev S, Dantas R M A, Germanskiy S, Deinert J C, Green B, Ilyakov I, Awari N, Chen M, Bawatna M, Ling J, Xiu F, van Loosdrecht P H M, Surówka P, Oka T and Wang Z 2020 Nat. Commun. 11 2451
[55] Kotov O V and Lozovik Y E 2016 Phys. Rev. B 93 235417
[56] Tabert C J, Carbotte J P and Nicol E J 2016 Phys. Rev. B 93 085426
[57] Saberi-Pouya S, Vazifehshenas T, Salavati-fard T, Farmanbar M and Peeters F M 2017 Phys. Rev. B 96 075411
[58] Crassee I, Sankar R, Lee W L, Akrap A and Orlita M 2018 Phys. Rev. Mater. 2 120302
[59] Throckmorton R E, Hofmann J, Barnes E and Das Sarma S 2015 Phys. Rev. B 92 115101
[60] Hofmann J, Barnes E, Das Sarma and S 2015 Phys. Rev. B 92 045104
[61] Huang S H, Xu S Y, Belopolski L, Lee C C, Chang G, Wang B, Alidoust N, Bian G, Neupane M, Zhang C, Jia S, Bansil A, Lin H and Hasan M Z 2015 Nat. Commun. 6 7373
[62] Liu Y, Wu Z, Liu X, Han S, Li Y, Yang T, Ma Y, Hong M, Luo J and Sun Z 2019 Adv. Opt. Mater. 7 1901049
[63] Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J and Cai M Q 2018 Nanoscale 10 8677
[64] Graham R, Miller C, Oh E and Yu D 2011 Nano Lett. 11 717
[65] Youngblood N and Li M 2017 Appl. Phys. Lett. 110 051102
[66] Song H, Li T, Zhang J, Zhou Y, Luo J, Chen C, Yang B, Ge C, Wu Y and Tang J 2017 Adv. Mater. 29 1700441
[67] Gong P L, Zhang F, Li L, Deng B, Pan H, Huang L F and Shi X Q 2019 J. Phys. Condens. Matter 31 395501
[68] Cheng X, Ma J, Zhou Y, Fang C, Wang J, Li J, Wen X and Li D 2020 J. Phys. Photon. 2 014008
[69] Yang Y, Liu S C, Yang W, Li Z, Wang Y, Wang X, Zhang S, Zhang Y, Long M, Zhang G, Xue D J, Hu J S and Wan L J 2018 J. Am. Chem. Soc. 140 4150
[70] Liu F, Zheng S, He X, Chaturvedi A, He J, Chow W L, Mion T R, Wang X, Zhou J, Fu Q, Fan H J, Tay B K, Song L, He R H, Kloc C, Ajayan P M, Liu Z 2016 Adv. Func. Mater. 26 1169
[71] Wang X, Li Y, Huang L, Jiang X W, Jiang L, Dong H, Wei Z, Li J and Hu W 2017 J. Am. Chem. Soc. 139 14976
[72] Gao S, Sun C and Zhang X 2019 Nanophotonics 2019-0435
[73] Chu F, Chen M, Wang Y, Xie Y, Liu B, Yang Y, An X and Zhang Y 2018 J. Mater. Chem. C 6 2509
[74] Zuber J W, Zhao T, Gong S, Hu M, Zhong R B, Zhang C and Liu S G 2020 Phys. Rev. B 101 085307
[75] Hong G H, Wang C W, Jiang J, Chen C, Cui S T, Yang H F, Liang A J, Liu S, Lv Y Y, Zhou J, Chen Y B, Yao S H, Lu M H, Chen Y F, Wang M X, Yang L X, Liu Z K and Chen Y L 2018 Chin. Phys. B 27 17105
[76] Fang C, Weng H, Dai X and Fang Z 2016 Chin. Phys. B 25 117106
[77] Lee C H, Yap H H, Tai T, Xu G, Zhang X and Gong J 2019 arXiv:1906.11806 [cond-mat.mes-hall]
[78] Duan W, Yang C, Ma Z, Zhu Y and Zhang C 2019 Phys. Rev. B 99 045124
[79] Ahn J, Park S, Kim D, Kim Y and Yang B J 2019 Chin. Phys. B 28 117101
[1] Electrical transport and optical properties of Cd3As2 thin films
Yun-Kun Yang(杨运坤), Fa-Xian Xiu(修发贤), Feng-Qiu Wang(王枫秋), Jun Wang(王军), Yi Shi(施毅). Chin. Phys. B, 2019, 28(10): 107502.
[2] Electron transport in Dirac and Weyl semimetals
Huichao Wang(王慧超), Jian Wang(王健). Chin. Phys. B, 2018, 27(10): 107402.
[3] Lattice dynamics properties of chalcopyrite ZnSnP2: Density-functional calculations by using a linear response theory
You Yu(虞游), Yu-Jing Dong(董玉静), Yan-Hong Shen(沈艳红), Guo-Dong Zhao(赵国栋), Xiao-Lin Zheng(郑小林), Jia-Nan Sheng(盛佳南). Chin. Phys. B, 2017, 26(4): 046302.
[4] Particles inside electrolytes with ion-specific interactions, their effective charge distributions and effective interactions
Mingnan Ding(丁茗楠), Yihao Liang(梁逸浩), Xiangjun Xing(邢向军). Chin. Phys. B, 2016, 25(10): 108201.
[5] Spin–orbit coupling effects on the in-plane optical anisotropy of semiconductor quantum wells
Yu Jin-Ling, Chen Yong-Hai, Lai Yun-Feng, Cheng Shu-Ying. Chin. Phys. B, 2014, 23(1): 017806.
[6] Dynamic electron transport theory for multiprobe mesoscopic structures
Quan Jun, Tian Ying, Zhang Jun, Shao Le-Xi. Chin. Phys. B, 2011, 20(7): 077201.
[7] Surface plasmon–polaritons on ultrathin metal films
Quan Jun, Tian Ying, Zhang Jun, Shao Le-Xi. Chin. Phys. B, 2011, 20(4): 047201.
[8] Strain effects on optical polarisation properties in (1122) plane GaN films
Hao Guo-Dong, Chen Yong-Hai, Fan Ya-Ming, Huang Xiao-Hui, Wang Huai-Bing. Chin. Phys. B, 2010, 19(11): 117105.
No Suggested Reading articles found!