Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 088202    DOI: 10.1088/1674-1056/ab928b
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals

Xiao-Jun Xiang(向晓君)1,2, Guo-Zhu Song(宋国柱)3, Xue-Feng Zhou(周雪峰)3, Hao Liang(梁浩)1, Yue Xu(徐月)5, Shi-Jun Qin(覃湜俊)2,4, Jun-Pu Wang(王俊普)1, Fang Hong(洪芳)2, Jian-Hong Dai(戴建红)3, Bo-Wen Zhou(周博文)2,4, Wen-Jia Liang(梁文嘉)1, Yun-Yu Yin(殷云宇)2, Yu-Sheng Zhao(赵予生)3, Fang Peng(彭放)1, Xiao-Hui Yu(于晓辉)2, Shan-Min Wang(王善民)3
1 Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
3 Department of Physics, Southern University of Science and Technology(SUST), Shenzhen 518055, China;
4 School of Physics, University of Chinese Academy of Sciences, Beijing 100049, China;
5 State Key Laboratory of Material Processing and Die&Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  As one of important members of refractory materials, tungsten phosphide (WP) holds great potential for fundamental study and industrial applications in many fields of science and technology, due to its excellent properties such as superconductivity and as-predicted topological band structure. However, synthesis of high-quality WP crystals is still a challenge by using tradition synthetic methods, because the synthesis temperature for growing its large crystals is very stringently required to be as high as 3000℃, which is far beyond the temperature capability of most laboratory-based devices for crystal growth. In addition, high temperature often induces the decomposition of metal phosphides, leading to off-stoichiometric samples based on which the materials' intrinsic properties cannot be explored. In this work, we report a high-pressure synthesis of single-crystal WP through a direct crystallization from cooling the congruent W-P melts at 5 GPa and ~3200℃. In combination of x-ray diffraction, electron microscope, and thermal analysis, the crystal structure, morphology, and stability of recovered sample are well investigated. The final product is phase-pure and nearly stoichiometric WP in a single-crystal form with a large grain size, in excess of one millimeter, thus making it feasible to implement most experimental measurements, especially, for the case where a large crystal is required. Success in synthesis of high-quality WP crystals at high pressure can offer great opportunities for determining their intrinsic properties and also making more efforts to study the family of transition-metal phosphides.
Keywords:  congruent melting      tungsten phosphide      single crystals      high pressure and high temperature  
Received:  05 March 2020      Revised:  03 May 2020      Published:  05 August 2020
PACS:  82.75.Fq (Synthesis, structure determination, structure modeling)  
  81.10.-h (Methods of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
  62.50.-p (High-pressure effects in solids and liquids)  
  61.50.-f (Structure of bulk crystals)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0401503 and 2018YFA0305700), the National Natural Science Foundation of China (Grant No. 11575288), the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2016006). the Key Research Platforms and Research Projects of Universities in Guangdong Province, China (Grant No. 2018KZDXM062), the Guangdong Innovative & Entrepreneurial Research Team Program, China (Grant No. 2016ZT06C279), the Shenzhen Peacock Plan, China (Grant No. KQTD2016053019134356), the Shenzhen Development & Reform Commission Foundation for Novel Nano-Material Sciences, China, the Research Platform for Crystal Growth & Thin-Film Preparation at SUST, China, and the Shenzhen Development and Reform Commission Foundation for Shenzhen Engineering Research Center for Frontier Materials Synthesis at High Pressure, China.
Corresponding Authors:  Fang Peng, Fang Peng, Xiao-Hui Yu     E-mail:  pengfang@scu.edu.cn;yuxh@iphy.ac.cn;wangsm@sustech.edu.cn

Cite this article: 

Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民) Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals 2020 Chin. Phys. B 29 088202

[1] Carenco S, Portehault D, Boissiere C, Mezailles N and Sanchez C 2013 Chem. Rev. 113 7981
[2] Oyama S T 2003 J. Catal. 216 343
[3] Stiner C 2001 Binary and ternary transition-metal phosphides as hydrodenitroge nation catalysts, Ph. D. Dissertation (ETH Zurich)
[4] Zuzaniuk V and Prins R 2003 J. Catal. 219 85
[5] Zhao H Y, Li D, Bui P and Oyama S T 2011 Appl. Catal. A-Gen. 391 305
[6] Clark P, Li W and Oyama S T 2001 Catal. 200 140
[7] Guan J, Wang Y, Qin M, Yang Y, Li X and Wang A 2009 J. Solid State Chem. 182 1550
[8] Liu P and Rodriguez J A 2005 J. Am. Chem. Soc. 127 14871
[9] Popczun E J, McKone J R, Read C G, Biacchi A J, Wiltrout A M, Lewis N S and Schaak R E 2013 J. Am. Chem. Soc. 135 9267
[10] Carenco S, Hu Y, Florea I, Ersen O, Boissiére C, Mézailles N and Sanchez C 2012 Chem. Mater. 24 4134
[11] Wang X, Clark P and Oyama S T 2002 J. Catal. 208 321
[12] Tegus O, Brück E, Buschow K H J and De Boer F R 2002 Nature 415 150
[13] Singh N, Khanna P K and Joy P A 2009 J. Nanopart Res. 11 491
[14] Lo C T and Kuo P Y 2010 J. Phys. Chem. C 114 4808
[15] Shang T, Philippe J, Verezhak J A T, Guguchia Z, Zhao J Z, Chang L J, lee M K, Gawryluk D J, Pomjakushina E, Shi M, Medarde M, Ott H R and Shiroka T 1955 Phys. Rev. B 99 184
[16] DeLong L E and Meisner G P 1985 Solid State Commun. 53 119
[17] Blaugher R D, Hulm J K and Yocom P N 1965 Phys. Chem. Solids 26 2037
[18] Liu Z, Wu W, Zhao Z, Zhao H, Cui J, Shan P, Zhang J, Yang C, Sun P, Wei Y, Li S, Zhao J, Sui Y, Che ng J, Lu L, Luo J and Liu G 2019 Phys. Rev. B 99 184509
[19] Shirotani I, Adachi T, Tachi K, Todo S, Nozawa K, Yagi T and Kinoshita M 1996 J. Phys. Chem. Solids 57 211
[20] Sharon M and Tamizhmani G 1986 J. Mater. Sci. 21 2193
[21] Shen G, Bando Y, Ye C, Yuan X, Sekiguchi T and Golberg D 2006 Angew. Chem. Int. Edit. 45 7568
[22] Kinomura N, Terao K, Kikkawa S and Koizumi M 1983 Solid State Chem. 48 306
[23] Kumar N, Sun Y, Xu N, Manna K, Yao M, Süss V and Borrmann H 2017 Nat. Commun. 8 1
[24] Gooth J, Menges F, Kumar N, Sü V, Shekhar C, Sun Y and Gotsmann B 2018 Nat. Commun. 9 1
[25] Su B, Song Y, Hou Y, ChenX, ZhaoJ, MaY, Yang Y, Guo J Luo J and Chen Z G 2019 Adv. Mater. 31 1903498
[26] Zhang T, Jiang Y, Song Z, Huang H, He Y, Fang Z, Weng H and Fang C 2019 Nature 566 475
[27] Zhou X, Ma D, Wang L, Zhao Y and Wang S 2020 Rev. Sci. Instrum. 91 1
[28] Zerr A, Miehe G and Riedel R 2003 Nat. Mater. 2 185
[29] Salamat A, Hector A L, Gray B M, Kimber S A, Bouvier P and McMillan P F 2013 J. Am. Chem. Soc. 135 9503
[30] Zerr A, Miehe G, Li J, Dzivenko D A, Bulatov V K, Höfer H and Yoshimura M 2009 Adv. Funct. Mater. 19 2282
[31] Salamat A, Woodhead K, Shah S I U, Hector A L and McMillan P F 2014 Chem. Commun. 50 10041
[32] Wang S, Ge H, Sun S, Zhang J, Liu F, Wen X and Neuefeind J C 2015 J. Am. Chem. Soc. 137 4815
[33] Wang S, Yu X, Lin Z, Zhang R, He D, Qin J and Zhang J 2012 Chem. Mater. 24 3023
[34] Friedrich A, Winkler B, Bayarjargal L, Morgenroth W, Juarez-Arellano E A, Milman V and Chen K 2010 Phys. Rev. Lett. 105 085504
[35] Young A F, Sanloup C, Gregoryanz E, Scandolo S, Hemley R J and Mao H K 2006 Phys. Rev. Lett. 96 155501
[36] Crowhurst J C, Goncharov A F, Sadigh B, Evans C L, Morrall P G, Ferreira J L and Nelson A J 2006 Science. 311 1275
[37] Gregoryanz E, Sanloup C, Somayazulu M, Badro J, Fiquet G, Mao H K and Hemley R J 2004 Nat. Mater. 3 294
[38] Utsumi W, Saitoh H, Kaneko H, Watanuki T, Aoki K and Shimomura O 2003 Nat. Mater. 2 735
[39] Li X, Peng F, Zhou X and Wang P 2013 Solid State Sci. 21 51
[40] Wang P, Wang Y, Wang L, Zhang X, Yu X, Zhu J, Wang S, Qin J, Leinenweber K, Chen H, He D and Zhao Y 2016 Sci. Rep. 6 21787
[41] Wang P, Peng F, Lei L, Chen H, Wang Q, Xu C, Wang W, Liu K, Ran X, Wang J, Tang M, Wang W, Liu J and He D 2013 J. Appl. Phys. 113 053507
[42] Wang P, Peng F, Guan J, Li Q, Yan X and He D 2012 High Pressure Res. 32 255
[43] Liang H, Peng F, Guan S, Tan L, Chen H, Lei L, He D and Lu C 2019 Appl. Phys. Lett. 115 231903
[44] Liang H, Chen H, Peng F, Liu L, Li X, Liu K, Liu C and Li X 2018 J. Phys. Chem. Solids 121 256
[45] Wang S, He D, Wang W and Lei L 2009 High Press. Res. 29 806
[46] Qin J, He D, Lei L, An P, Fang L, Li Y, Wang F and Kou Z 2009 J. Alloys Compd. 476 L8
[47] Rodríguez-Carvajal J 1993 Physica B 192 55
[48] Rundqvist S and Lundström T 1963 Acta Chem. Scand. 17 37
[49] Martin J and Gruehn R 1990 Solid State Ionics 43 19
[50] Guerin R, Sergent M and Prigent J 1975 Mater. Res. Bull. 10 957
[1] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[2] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[3] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[4] Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process
Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超). Chin. Phys. B, 2020, 29(7): 078101.
[5] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[6] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[7] Characteristics of urea under high pressure and high temperature
Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(9): 098101.
[8] Inclusions in large diamond single crystals at different temperatures of synthesis
Fei Han(韩飞), Shang-Sheng Li(李尚升), Xue-Fei Jia(贾雪菲), Wei-Qin Chen(陈玮琴), Tai-Chao Su(宿太超), Mei-Hua Hu(胡美华), Kun-Peng Yu(于昆鹏), Jian-Kang Wang(王健康), Yu-Min Wu(吴玉敏), Hong-An Ma(马红安), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(2): 028103.
[9] Synthesis of diamonds in Fe—C systems using nitrogen and hydrogen co-doped impurities under HPHT
Shi-Shuai Sun(孙士帅), Zhi-Hui Xu(徐智慧), Wen Cui(崔雯), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2017, 26(9): 098101.
[10] Different effect of NiMnCo or FeNiCo on the growth of type-IIa large diamonds with Ti/Cu as nitrogen getter
Shang-Sheng Li(李尚升), He Zhang(张贺), Tai-Chao Su(宿太超), Qiang Hu(胡强), Mei-Hua Hu(胡美华), Chun-Sheng Gong(龚春生), Hon-An Ma(马红安), Xiao-Peng Jia(贾晓鹏), Yong Li(李勇). Chin. Phys. B, 2017, 26(6): 068102.
[11] Synthesis of N-type semiconductor diamonds with sulfur, boron co-doping in FeNiMnCo-C system at high pressure and high temperature
He Zhang(张贺), Shangsheng Li(李尚升), Taichao Su(宿太超), Meihua Hu(胡美华), Hongan Ma(马红安), Xiaopeng Jia(贾晓鹏), Yong Li(李勇). Chin. Phys. B, 2017, 26(5): 058102.
[12] High thermal stability of diamond-cBN-B4C-Si composites
Hong-Sheng Jia(贾洪声), Pin-Wen Zhu(朱品文), Hao Ye(叶灏), Bin Zuo(左斌), Yuan-Long E(鄂元龙), Shi-Chong Xu(徐仕翀), Ji Li(李季), Hai-Bo Li(李海波), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2017, 26(1): 018102.
[13] Effects of Mg on diamond growth and properties in Fe-C system under high pressure and high temperature condition
Guo-Feng Huang(黄国锋), You-Jin Zheng(郑友进), Zhan-Chang Li(李战厂), Qiang Gao(高强), Zhuo Ma(马卓), Si-Ming Shi(史思明), Bao-Gang Jiang(姜宝钢), He Zhao(赵赫). Chin. Phys. B, 2016, 25(8): 088104.
[14] Ceramic synthesis of 0.08BiGaO3-0.90BaTiO3-0.02LiNbO3 under high pressure and high temperature
Hui Jin(金慧), Yong Li(李勇), Mou-Sheng Song(宋谋胜), Lin Chen(陈琳), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2016, 25(7): 078202.
[15] Behaviors of Zn2GeO4 under high pressure and high temperature
Shu-Wen Yang(杨淑雯), Fang Peng(彭放), Wen-Tao Li(李文涛), Qi-Wei Hu(胡启威), Xiao-Zhi Yan(晏小智), Li Lei(雷力), Xiao-Dong Li(李晓东), Duan-Wei He(贺端威). Chin. Phys. B, 2016, 25(7): 076101.
No Suggested Reading articles found!