Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 080701    DOI: 10.1088/1674-1056/ab90f7
GENERAL Prev   Next  

Simulation study of high voltage GaN MISFETs with embedded PN junction

Xin-Xing Fei(费新星)1, Ying Wang(王颖)2, Xin Luo(罗昕)1, Cheng-Hao Yu(于成浩)2
1 College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;
2 Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China

In this paper, we propose a new enhanced GaN MISFET with embedded pn junction, i.e., EJ-MISFET, to enhance the breakdown voltage. The embedded pn junction is used to improve the simulated device electric field distribution between gate and drain, thus achieving an enhanced breakdown voltage (BV). The proposed simulated device with LGD=15 μm presents an excellent breakdown voltage of 2050 V, which is attributed to the improvement of the device electric field distribution between gate and drain. In addition, the ON-resistance (RON) of 15.37 Ω·mm and Baliga's figure of merit of 2.734 GW·cm-2 are achieved in the optimized EJ-MISFET. Compared with the field plate conventional GaN MISFET (FPC-MISFET) without embedded pn junction structure, the proposed simulated device increases the BV by 32.54% and the Baliga's figure of merit is enhanced by 71.3%.

Keywords:  TCAD      Baliga's figure of merit (BFOM)      breakdown voltage (BV)     
Received:  24 February 2020      Published:  05 August 2020
PACS:  07.05.Tp (Computer modeling and simulation)  
  94.20.Ss (Electric fields; current system)  
  51.50.+v (Electrical properties)  
  84.30.Jc (Power electronics; power supply circuits)  

Project supported by the National Natural Science Foundation of China (Grant No. 61774052) and the Excellent Youth Foundation of Zhejiang Province, China (Grant No. LR17F040001).

Corresponding Authors:  Ying Wang     E-mail:

Cite this article: 

Xin-Xing Fei(费新星), Ying Wang(王颖), Xin Luo(罗昕), Cheng-Hao Yu(于成浩) Simulation study of high voltage GaN MISFETs with embedded PN junction 2020 Chin. Phys. B 29 080701

[1] Chen K J, Häberlen O, Lidow A, Tsai C l, Ueda T, Uemoto Y and Wu Y 2017 IEEE Trans. Electron. Dev. 64 779
[2] Huang X, Liu Z, Lee F C and Li Q 2015 IEEE Trans. Electron. Dev. 62 270
[3] Ma X H, Zhang Y M, Wang X H, Yuan T T, Pang L, Chen W W and Liu X Y 2015 Chin. Phys. B 24 027101
[4] Duan B X and Yang Y T 2012 Chin. Phys. B 21 057201
[5] Liu J, Wang L Q and Huang Z X 2019 Acta Phys. Sin. 68 248501(in Chinese)
[6] Ishida M, Ueda T, Tanaka T and Ueda D 2013 IEEE Trans. Electron Dev. 60 3053
[7] Chen X B 1998 Microelectron. J. 29 1005
[8] Chen X B and Sin J 2001 IEEE Trans. Electron. Dev. 48 344
[9] Zhao Z, Zhao Z, Luo Q and Du J 2013 Electron. Lett. 49 1638
[10] Huang W, Chow T P, Niiyama Y, Nomura T and Yoshida S 2009 IEEE Electron Dev. Lett. 30 1018
[11] Wei M, Fan J S, Du M, Zhang J F, Zheng X F, Wang C, Ma X H, Zhang J C and Hao Y 2016 Chin. Phys. B 25 127305
[12] Karmalkar S, Deng J Y and Shur M S 2001 IEEE Electron Dev. Lett. 22 373
[13] Zhao S L, Wang Y, Yang X L, Lin Z Y, Wang C, Zhang J C, Ma X H and Hao Y 2014 Chin. Phys. B 23 097305
[14] Yang C, Luo X R, Zhang A B, Deng S Y, Quyang D F, Peng F, Wei J, Zhang B and Li Z J 2018 IEEE Trans. Electron. Dev. 65 5203
[15] Xie G, Edward X, Niloufar H, Zhang B, Fred Y F and Wai T N 2012 Chin. Phys. B 21 086105
[16] Nakajima A, Sumida Y, Dhyani M H, Kawai H and Narayanan E M 2011 IEEE Electron. Dev. Lett. 32 542
[17] Yang C, Xiong J Y, Wei J, Wu J F, Peng F, S Deng Y, Zhang and Luo X R 2016 Superlattices Microstruct. 92 92
[18] Yang C, Luo X R, Sun T, Zh A B, Ouyang D F, Deng S Y and Zhang B 2019 Nanoscale Res. Lett. 14 191
[19] Wang Zh X, Du L, Liu J W, Wang Y, jiang Y, Ji S W, Dong S W, Chen W W, Tan X H, Li J L, Li X J, Zhao S L, Zhang J C and Hao Y 2020 Chin. Phys. B 29 027301
[20] Srivastava P, Das J, Visalli D, Hove M V, Malinowski P E, Marcon D, Lenci S, Geens K, Cheng K, Leys M, Decoutere S, Mertens R P and Borghs G 2011 IEEE Electron Dev. Lett. 32 30
[21] Tang G, Wei J, Zhang Z, Tang X, Hua M and Chen K J 2017 IEEE Electron. Dev. Lett. 38 937
[22] Sentaurus Device User Guide, Synopsys TCAD 2013
[23] Zhou Q, Yang Y, Hu K, Zhu R, Chen W and Zhang B 2017 IEEE Trans. Ind. Electron. 64 8971
[24] Hua M, Wei J, Tang G, Zhang Zh, Qian Q, Cai X, Wang N and Chen K J 2017 IEEE Electron Dev. Lett. 38 929
[25] Lu B, Matioli E and Palacios T 2012 IEEE Electron. Dev. Lett. 33 360
[26] Huang W, Khan T and Chow T P 2006 IEEE Electron. Dev. Lett. 27 796
[27] Im K S, Ha J B, Kim K W, Lee J S, Kim D S, Hahm S H and Lee J H 2010 IEEE Electron. Dev. Lett. 31 192
[28] Brown D F, Shinohara K, Corrion A L, Chu R, Williams A, Wong J C, Rodriguez I A, Grabar R, Johnson M, Butler C M, Santos D, Burnham S D, Robinson J F, Zehnder D, Kim S J, Oh T C and Micovic M 2013 IEEE Electron. Dev. Lett. 34 1118
[29] Hu Z, Nomoto K, Qi M, Li W, Zhu M, Gao X, Jena D and Xing H 2017 IEEE Electron. Dev. Lett. 38 1071
[30] Zhang Y, Liu Z, Tadjer M J, Sun M, Piedra D, Hatem C, Anderson T J, Luna L E, Nath A, Koehler A D, Okumura H, Hu J, Zhang X, Gao X, Feigelson B N, Hobart K D and Palacios T 2017 IEEE Electron. Dev. Lett. 38 1097
[31] Ji D, Agarwal A, Li W, Keller S and Chowdhury S 2018 IEEE Trans. Electron. Dev. 65 483
[32] Miao M S, Weber J R and Van de Walle C G 2010 J. Appl. Phys. 107 123713
[33] Mojab A, Hemmat Z, Riazmontazer H and Rahnamaee A 2017 IEEE Trans. Electron. Dev. 64 796
[34] Bai Z Y, Du J F, Liu Y, Xin Q, Liu Y and Yu Q 2017 Solid-state Elect. 133 31
[35] Tang Z K, Q Jiang M, Lu Y Y, Huang S, Yang S, Tang X and Chen K J 2013 IEEE Electron. Dev. Lett. 34 1373
[36] Zhao S L, Hou B, Chen W, Mi M, Zheng J, Zhang J, Ma X and Hao Y 2016 IEEE Trans. Power Electron. 31 1517
[37] Wang H Y, Wang J Y, Li M J, Cao Q R, Yu M, He Y D and Wu W G 2018 IEEE Electron Dev. Lett. 39 1888
[38] Gao J N, Jin Y F, Hao Y L, Xie B, Wen C P, Shen B and Wang M J 2018 IEEE Trans. Electron. Dev. 65 1728
[39] Hu Q, Li S, Li T, Wang X, Li X and Wu Y 2018 IEEE Electron Dev. Lett. 39 1377
[40] Tao M, Liu S F, Xie B, Wen C P, Wang J Y, Hao Y L, Wu W G, Chen K, Shen B and Wang M J 2018 IEEE Trans. Electron. Dev. 65 1453
[1] Investigation of gate oxide traps effect on NAND flash memory by TCAD simulation
He-Kun Zhang(章合坤), Xuan Tian(田璇), Jun-Peng He(何俊鹏), Zhe Song(宋哲), Qian-Qian Yu(蔚倩倩), Liang Li(李靓), Ming Li(李明), Lian-Cheng Zhao(赵连城), Li-Ming Gao(高立明). Chin. Phys. B, 2020, 29(3): 038501.
[2] Impact of proton-induced alteration of carrier lifetime on single-event transient in SiGe heterojunction bipolar transistor
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏), Hong-Xia Guo(郭红霞). Chin. Phys. B, 2019, 28(7): 076106.
[3] Research on SEE mitigation techniques using back junction and p+ buffer layer in domestic non-DTI SiGe HBTs by TCAD
Jia-Nan Wei(魏佳男), Chao-Hui He(贺朝会), Pei Li(李培), Yong-Hong Li(李永宏). Chin. Phys. B, 2019, 28(6): 068503.
[4] Analytical capacitance model for 14 nm FinFET considering dual-k spacer
Fang-Lin Zheng(郑芳林), Cheng-Sheng Liu(刘程晟), Jia-Qi Ren(任佳琪), Yan-Ling Shi(石艳玲), Ya-Bin Sun(孙亚宾), Xiao-Jin Li(李小进). Chin. Phys. B, 2017, 26(7): 077303.
[5] A novel P-channel SOI LDMOS structure with non-depletion potential-clamped layer
Wei Li(李威), Zhi Zheng(郑直), Zhigang Wang(汪志刚), Ping Li(李平), Xiaojun Fu(付晓君), Zhengrong He(何峥嵘), Fan Liu(刘凡), Feng Yang(杨丰), Fan Xiang(向凡), Luncai Liu(刘伦才). Chin. Phys. B, 2017, 26(1): 017701.
[6] Impact of neutron-induced displacement damage on the single event latchup sensitivity of bulk CMOS SRAM
Xiao-Yu Pan(潘霄宇), Hong-Xia Guo(郭红霞), Yin-Hong Luo(罗尹虹), Feng-Qi Zhang(张凤祁), Li-Li Ding(丁李利), Jia-Nan Wei(魏佳男), Wen Zhao(赵雯). Chin. Phys. B, 2017, 26(1): 018501.
[7] Low on-resistance high-voltage lateral double-diffused metal oxide semiconductor with a buried improved super-junction layer
Wu Wei, Zhang Bo, Luo Xiao-Rong, Fang Jian, Li Zhao-Ji. Chin. Phys. B, 2014, 23(3): 038503.
[8] Scaling effects of single-event gate rupture in thin oxides
Ding Li-Li, Chen Wei, Guo Hong-Xia, Yan Yi-Hua, Guo Xiao-Qiang, Fan Ru-Yu. Chin. Phys. B, 2013, 22(11): 118501.
No Suggested Reading articles found!