Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077501    DOI: 10.1088/1674-1056/ab90f3

Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound

Yan-Hong Ding(丁燕红)1, Fan-Zhen Meng(孟凡振)1, Li-Chen Wang(王利晨)2,3,4, Ruo-Shui Liu(刘若水)3, Jun Shen(沈俊)2,4
1 School of Electrical and Electronic Engineering, Tianjin Key Laboratory of Film Electronic and Communication Devices, Tianjin University of Technology, Tianjin 300384, China;
2 Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China;
3 Department of Physics, Capital Normal University, Beijing 100048, China;
4 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Rare-earth (R)-based materials with large reversible magnetocaloric effect (MCE) are attracting much attention as the promising candidates for low temperature magnetic refrigeration. In the present work, the magnetic properties and MCE of DyNiGa compound with TiNiSi-type orthorhombic structure are studied systematically. The DyNiGa undergoes a magnetic transition from antiferromagnetic (AFM) to paramagnetic state with Néel temperature TN = 17 K. Meanwhile, it does not show thermal and magnetic hysteresis, revealing the perfect thermal and magnetic reversibility. Moreover, the AFM state can be induced into a ferromagnetic state by a relatively low field, and thus leading to a large reversible MCE, e.g., a maximum magnetic entropy change (-ΔSM) of 10 J/kg·K is obtained at 18 K under a magnetic field change of 5 T. Consequently, the large MCE without thermal or magnetic hysteresis makes the DyNiGa a competitive candidate for magnetic refrigeration of hydrogen liquefaction.
Keywords:  DyNiGa      antiferromagnetic      magnetocaloric effect      first-order phase transition  
Received:  11 February 2020      Revised:  20 April 2020      Accepted manuscript online: 
PACS:  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.50.Bb (Fe and its alloys)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51701130 and 51925605), the Natural Science Foundation of Tianjin, China (Grant Nos. 18ZXCLGX00040 and 15JCZDJC38700), and the National Key Research and Development Program of China (Grant Nos. 2019YFA0704900, 2019YFA0705000, 2019YFA0705100, 2019YFA0705200, and 2019YFA0705300).
Corresponding Authors:  Yan-Hong Ding, Li-Chen Wang     E-mail:;

Cite this article: 

Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊) Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound 2020 Chin. Phys. B 29 077501

[1] Franco V, Blázquez J S and Conde A 2006 Appl. Phys. Lett. 89 222512
[2] Pecharsky V K and Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
[3] Hu F X, Shen B G, Sun J R and Zhang X X 2000 Chin. Phys. 9 550
[4] Tegus O, Brück E, Buschow K H J and de Boer F R 2002 Nature 415 150
[5] Zheng X Q, Shen J, Hu F X Sun J R and Shen B G 2016 Acta Phys. Sin. 65 217502 (in Chinese)
[6] Barclay J A and Steyert W A 1982 Cryogenics 22 73
[7] Wada H and Tanabe Y 2001 Appl. Phys. Lett. 79 3302
[8] Wang Y X, Zhang H, Liu E K, Zhong X C, Tao K, Wu M L, Xing C F, Xiao Y N, Liu J and Long Y 2018 Adv. Electron. Mater. 4 1700636
[9] Zheng X Q, Xu J W, Zhang H, Zhang J Y, Wang S G, Zhang Y, Xu Z Y, Wang L C and Shen B G 2018 AIP Adv. 8 056432
[10] Zhang H, Shen B G 2015 Chin. Phys. B 24 127504
[11] Gupta S and Suresh K G 2015 J. Alloys Compd. 618 562
[12] Chen J, Shen B G, Dong Q Y, Hu F X, Sun J R 2010 Appl. Phys. Lett. 96 152501
[13] Wang Y X, Zhang H, Wu M L, Tao K, Li Y W, Yan T, Long K W, Long T, Pang Z and Long Y 2016 Chin. Phys. B 25 127104
[14] Zhang H, Shen B G, Xu Z Y, Shen J, Hu F X, Sun J R and Long Y 2013 Appl. Phys. Lett. 102 092401
[15] Zhang H, Sun Y J, Niu E, Yang L H, Shen J, Hu F X, Sun J R and Shen B G 2013 Appl. Phys. Lett. 103 202412
[16] Zhang X X, Wang F W and Wen G H 2001 J. Phys.: Condes. Matter 13 L747
[17] Zhang H, Wu Y Y, Long Y, Wang H S, Zhong K X, Hu F X, Sun J R and Shen B G 2014 J. Appl. Phys. 116 213902
[18] Chen J, Shen B G, Dong Q Y and Sun J R 2010 Solid State Commun. 150 1429
[19] Canepa F, Napoletano M, Palenzona A, Merlo F and Cirafici S 1999 J. Phys. D: Appl. Phys. 32 2721
[20] Vasilechko L O and Grin Y 1996 Inorg. Mater. 32 512
[21] Arora P, Chattopadhyay M K, Chandra L S S, Sharma V K and Roy S B 2011 J. Phys.: Condes. Matter 23 056002
[22] Mo Z J, Shen J, Yan L Q, Wu J F, Wang L C, Lin J, Tang C C and Shen B G 2013 Appl. Phys. Lett. 102 192407
[23] Gupta S, Rawat R and Suresh K G 2014 Appl. Phys. Lett. 105 012403
[24] Zheng X Q and Shen B G 2017 Chin. Phys. B 26 027501
[25] Banerjee S K 1964 Phys. Lett. 12 16
[26] Liu R S, Liu J, Wang L C, Li Z R, Yu X, Mi Y, Dong Q Y, Li K, Li D L, Lv C H, Liu L F and He S L 2020 Chin. Phys. Lett. 37 017501
[27] Dong Q Y, Shen B G, Chen J, Shen J, Zhang H W and Sun J R 2009 J. Appl. Phys. 105 113902
[28] von Ranke P J, Mota M A, Grangeia D F, Magnus A, Carvalho G, Gandra F C G, Coelho A A, Caldas A, de Oliveira N A and Gama S 2004 Phys. Rev. B 70 134428
[1] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[2] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[3] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[4] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[5] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
[6] Table-like shape magnetocaloric effect and large refrigerant capacity in dual-phase HoNi/HoNi2 composite
Dan Guo(郭丹), Yikun Zhang(张义坤)†, Yaming Wang(王雅鸣), Jiang Wang(王江), and Zhongming Ren(任忠鸣)‡. Chin. Phys. B, 2020, 29(10): 107502.
[7] Magnetic properties of the double perovskite compound Sr2YRuO6
N. EL Mekkaoui, S. Idrissi, S. Mtougui, I. EL Housni, R. Khalladi, S. Ziti, H. Labrim, L. Bahmad. Chin. Phys. B, 2019, 28(9): 097503.
[8] Spin transport in antiferromagnetic insulators
Zhiyong Qiu(邱志勇), Dazhi Hou(侯达之). Chin. Phys. B, 2019, 28(8): 088504.
[9] Quaternary antiferromagnetic Ba2BiFeS5 with isolated FeS4 tetrahedra
Shaohua Wang(王少华), Xiao Zhang(张晓), Hechang Lei(雷和畅). Chin. Phys. B, 2019, 28(8): 087401.
[10] Critical behavior and magnetocaloric effect in magnetic Weyl semimetal candidate Co2-xZrSn
Tianlin Yu(于天麟), Xiaoyun Yu(余骁昀), En Yang(杨恩), Chang Sun(孙畅), Xiao Zhang(张晓), Ming Lei(雷鸣). Chin. Phys. B, 2019, 28(6): 067501.
[11] Magnetic properties and magnetocaloric effects in (Ho1-xYx)5Pd2 compounds
X F Wu(武小飞), C P Guo(郭翠萍), G Cheng(成钢), C R Li(李长荣), J Wang(王江), Y S Du(杜玉松), G H Rao(饶光辉), Z M Du(杜振民). Chin. Phys. B, 2019, 28(5): 057502.
[12] Magnetoresistance hysteresis in topological Kondo insulator SmB6 nanowire
Ling-Jian Kong(孔令剑), Yong Zhou(周勇), Hua-Ding Song(宋化鼎), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏). Chin. Phys. B, 2019, 28(10): 107501.
[13] Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13
Jun Luo(罗军), Jie Yang(杨杰), S Maeda, Zheng Li(李政), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077401.
[14] Magnetostructural transformation and magnetocaloric effect in Mn48-xVxNi42Sn10 ferromagnetic shape memory alloys
Najam ul Hassan, Ishfaq Ahmad Shah, Tahira Khan, Jun Liu(刘俊), Yuanyuan Gong(龚元元), Xuefei Miao(缪雪飞), Feng Xu(徐锋). Chin. Phys. B, 2018, 27(3): 037504.
[15] Magnetocaloric effect in the layered organic-inorganic hybrid (CH3NH3)2CuCl4
Yinina Ma(马怡妮娜), Kun Zhai(翟昆), Liqin Yan(闫丽琴), Yisheng Chai(柴一晟), Dashan Shang(尚大山), Young Sun(孙阳). Chin. Phys. B, 2018, 27(2): 027501.
No Suggested Reading articles found!