Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 088503    DOI: 10.1088/1674-1056/ab90f2
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction

Jing Zeng(曾晶)1,3, Ke-Qiu Chen(陈克求)2, Yanhong Zhou(周艳红)4
1 College of Physics and Electronic Engineering, Hengyang Normal University, Hengyang 421002, China;
2 Department of Applied Physics, School of Physics and Electronics, Hunan University, Changsha 410082, China;
3 Hunan Provincial Key Laboratory of Intelligent Information Processing and Application, Hengyang 421002, China;
4 College of Science, East China Jiao Tong University, Nanchang 330013, China
Abstract  Very recently, experimental evidence showed that the hydrogen is retained in dithiol-terminated single-molecule junction under the widely adopted preparation conditions, which is in contrast to the accepted view[Nat. Chem. 11 351 (2019)]. However, the hydrogen is generally assumed to be lost in the previous physical models of single-molecule junctions. Whether the retention of the hydrogen at the gold-sulfur interface exerts a significant effect on the theoretical prediction of spin transport properties is an open question. Therefore, here in this paper we carry out a comparative study of spin transport in M-tetraphenylporphyrin-based (M=V, Cr, Mn, Fe, and Co; M-TPP) single-molecule junction through Au-SR and Au-S(H)R bondings. The results show that the hydrogen at the gold-sulfur interface may dramatically affect the spin-filtering efficiency of M-TPP-based single-molecule junction, depending on the type of transition metal ions embedded into porphyrin ring. Moreover, we find that for the Co-TPP-based molecular junction, the hydrogen at the gold-sulfur interface has no obvious effect on transmission at the Fermi level, but it has a significant effect on the spin-dependent transmission dip induced by the quantum interference on the occupied side. Thus the fate of hydrogen should be concerned in the physical model according to the actual preparation condition, which is important for our fundamental understanding of spin transport in the single-molecule junctions. Our work also provides guidance in how to experimentally identify the nature of gold-sulfur interface in the single-molecule junction with spin-polarized transport.
Keywords:  transport properties      molecular electronic devices      gold-sulfur interface      density-functional theory      nonequilibrium Green's functions  
Received:  06 March 2020      Revised:  02 April 2020      Published:  05 August 2020
PACS:  85.65.+h (Molecular electronic devices)  
  73.40.-c (Electronic transport in interface structures)  
  73.63.-b (Electronic transport in nanoscale materials and structures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674092, 11804093, and 61764005), the Natural Science Foundation of Hunan Province, China (Grant No. 2019JJ40006), the Scientific Research Fund of the Education Department of Hunan Province, China (Grant No. 18B368), the Science and Technology Development Plan Project of Hengyang City, China (Grant No. 2018KJ121), and the Science and Technology Plan Project of Hunan Province, China (Grant No. 2016TP1020).
Corresponding Authors:  Jing Zeng, Ke-Qiu Chen     E-mail:  zengjing@hynu.edu.cn;keqiuchen@hnu.edu.cn

Cite this article: 

Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红) Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction 2020 Chin. Phys. B 29 088503

[1] Ke G, Duan C, Huang F and Guo X 2020 InfoMat 2 92
[2] Andres R P, Bein T, Dorogi M, Feng S, Henderson J I, Kubiak C P, Mahoney W, Osifchin R G and Reifenberger R 1996 Science 272 1323
[3] Kuang G, Chen S Z, Yan L, Chen K Q, Shang X, Liu P N and Lin N 2018 J. Am. Chem. Soc. 140 570
[4] Jia C, Migliore A, Xin N, Huang S, Wang J, Yang Q, Wang S, Chen H, Wang D, Feng B, Liu Z, Zhang G, Qu D H, Tian H, Ratner M A, Xu H Q, Nitzan A and Guo X 2016 Science 352 1443
[5] Xin N, Wang J, Jia C, Liu Z, Zhang X, Yu C, Li M, Wang S, Gong Y, Sun H, Zhang G, Liu Z, Zhang G, Liao J, Zhang D and Guo X 2017 Nano Lett. 17 856
[6] Zeng J, Chen K Q and Tong Y X 2018 Carbon 127 611
[7] Zhang Z, Guo C, Kwong D J, Li J, Deng X and Fan Z 2013 Adv. Funct. Mater. 23 2765
[8] Qiu M, Zhang Z H, Deng X Q and Pan J B 2010 Appl. Phys. Lett. 97 242109
[9] Kuang G, Chen S Z, Wang W, Lin T, Chen K, Shang X, Liu P N and Lin N 2016 J. Am. Chem. Soc. 138 11140
[10] Pan C N, Long M Q and He J 2018 Chin. Phys. B 27 088101
[11] Zeng Y J, Liu Y Y, Zhou W X and Chen K Q 2018 Chin. Phys. B 27 036304
[12] Gu Y, Hu Y, Huang J, Li Q and Yang J 2019 J. Phys. Chem. C 123 16366
[13] Yang K, Chen H, Pope T, Hu Y, Liu L, Wang D, Tao L, Xiao W, Fei X, Zhang Y Y, Luo H G, Du S, Xiang T, Hofer W A and Gao H J 2019 Nat. Commun. 10 1
[14] Zeng J and Chen K Q 2020 J. Mater. Chem. C 8 3758
[15] Garner M H, Li H, Chen Y, Su T A, Shangguan Z, Paley D W, Liu T, Ng F, Li H, Xiao S, Nuckolls C, Venkataraman L and Solomon G C 2018 Nature 558 415
[16] Shi X, Dai Z and Zeng Z 2007 Phys. Rev. B 76 235412
[17] Cai S, Deng W, Huang F, Chen L, Tang C, He W, Long S, Li R, Tan Z, Liu J, Shi J, Liu Z, Xiao Z, Zhang D and Hong W 2019 Angew. Chem. 131 3869
[18] Frisenda R, Janssen V A E C, Grozema F C, van der Zant H S J and Renaud N 2016 Nat. Chem. 8 1099
[19] Pilevarshahri R, Rungger I, Archer T Sanvito S and Shahtahmassebi N 2011 Phys. Rev. B 84 174437
[20] Tsuji Y, Staykov A and Yoshizawa K 2011 J. Am. Chem. Soc. 133 5955
[21] Cho W J, Cho Y, Min S K, Kim W Y and Kim K S 2011 J. Am. Chem. Soc. 133 9364
[22] Han L, Zuo X, Li H, Li Y, Fang C and Liu D 2019 J. Phys. Chem. C 123 2736
[23] Deng X, Zhang Z, Zhou J and Qiu M 2010 Appl. Phys. Lett. 97 143103
[24] Kwong G, Zhang Z and Pan J 2011 Appl. Phys. Lett. 99 123108
[25] Xie F, Fan Z Q, Chen K Q, Zhang X J and Long M Q 2017 Org. Electron. 50 198
[26] Fan Z Q, Zhang Z H, Qiu M, Deng X Q and Tang G P 2012 Appl. Phys. Lett. 101 073104
[27] Qiu M, Zhang Z, Fan Z, Deng X and Pan J 2011 J. Phys. Chem. C 115 11734
[28] Zeng J and Chen K Q 2017 Phys. Chem. Chem. Phys. 19 9417
[29] Häkkinen, H 2012 Nat. Chem. 4 443
[30] Inkpen M S, Liu Z F, Li H, Campos L M, Neaton J B and Venkataraman L 2019 Nat. Chem. 11 351
[31] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[32] Hong K and Kim W Y 2013 Angew. Chem. 125 3473
[1] First principles calculations on the thermoelectric properties of bulk Au2S with ultra-low lattice thermal conductivity
Y Y Wu(伍义远), X L Zhu(朱雪良), H Y Yang(杨恒玉), Z G Wang(王志光), Y H Li(李玉红), B T Wang(王保田). Chin. Phys. B, 2020, 29(8): 087202.
[2] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[3] Defect engineering on the electronic and transport properties of one-dimensional armchair phosphorene nanoribbons
Huakai Xu(许华慨), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(3): 037302.
[4] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[5] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[6] Growth and transport properties of topological insulator Bi2Se3 thin film on a ferromagnetic insulating substrate
Shanna Zhu(朱珊娜), Gang Shi(史刚), Peng Zhao(赵鹏), Dechao Meng(孟德超), Genhao Liang(梁根豪), Xiaofang Zhai(翟晓芳), Yalin Lu(陆亚林), Yongqing Li(李永庆), Lan Chen(陈岚), Kehui Wu(吴克辉). Chin. Phys. B, 2018, 27(7): 076801.
[7] Non-monotonic dependence of current upon i-width in silicon p-i-n diodes
Zheng-Peng Pang(庞正鹏), Xin Wang(王欣), Jian Chen(陈健), Pan Yang(杨盼), Yang Zhang(张洋), Yong-Hui Tian(田永辉), Jian-Hong Yang(杨建红). Chin. Phys. B, 2018, 27(6): 066106.
[8] Multinary diamond-like chalcogenides for promising thermoelectric application
Dan Zhang(张旦), Hong-Chang Bai(白洪昌), Zhi-Liang Li(李志亮), Jiang-Long Wang(王江龙), Guang-Sheng Fu(傅广生), Shu-Fang Wang(王淑芳). Chin. Phys. B, 2018, 27(4): 047206.
[9] Excellent thermal stability and thermoelectric properties of Pnma-phase SnSe in middle temperature aerobic environment
Yu Tang(唐语), Decong Li(李德聪), Zhong Chen(陈钟), Shuping Deng(邓书平), Luqi Sun(孙璐琪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Shukang Deng(邓书康). Chin. Phys. B, 2018, 27(11): 118105.
[10] Electronic structures of impurities and point defects in semiconductors
Yong Zhang(张勇). Chin. Phys. B, 2018, 27(11): 117103.
[11] Transport properties of doped Bi2Se3 and Bi2Te3 topological insulators and heterostructures
Zhen-Hua Wang(王振华), Xuan P A Gao(高翾), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2018, 27(10): 107901.
[12] Transport properties of mixing conduction in CaF2 nanocrystals under high pressure
Ting-Jing Hu(胡廷静), Xiao-Yan Cui(崔晓岩), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2018, 27(1): 016401.
[13] Spin-dependent transport characteristics of nanostructures based on armchair arsenene nanoribbons
Kai-Wei Yang(杨开巍), Ming-Jun Li(李明君), Xiao-Jiao Zhang(张小姣), Xin-Mei Li(李新梅), Yong-Li Gao(高永立), Meng-Qiu Long(龙孟秋). Chin. Phys. B, 2017, 26(9): 098509.
[14] Spin-filter effect and spin-polarized optoelectronic properties in annulene-based molecular spintronic devices
Zhiyuan Ma(马志远), Ying Li(李莹), Xian-Jiang Song(宋贤江), Zhi Yang(杨致), Li-Chun Xu(徐利春), Ruiping Liu(刘瑞萍), Xuguang Liu(刘旭光), Dianyin Hu(胡殿印). Chin. Phys. B, 2017, 26(6): 067201.
[15] High pressure electrical transport behavior in SrF2 nanoplates
Xiao-Yan Cui(崔晓岩), Ting-Jing Hu(胡廷静), Jing-Shu Wang(王婧姝), Jun-Kai Zhang(张俊凯), Xue-Fei Li(李雪飞), Jing-Hai Yang(杨景海), Chun-Xiao Gao(高春晓). Chin. Phys. B, 2017, 26(4): 046401.
No Suggested Reading articles found!