Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(8): 084402    DOI: 10.1088/1674-1056/ab90f0
Special Issue: SPECIAL TOPIC — Phononics and phonon engineering
SPECIAL TOPIC—Phononics and phonon engineering Prev   Next  

Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires

Qilang Wang(王啟浪)1, Yunyu Chen(陈允玉)2, Adili Aiyiti(阿地力·艾依提)1, Minrui Zheng(郑敏锐)3, Nianbei Li(李念北)4, Xiangfan Xu(徐象繁)1
1 Center for Phononics and Thermal Energy Science, China-EU Joint Center for Nanophononics, School of Physics Science and Engineering, Tongji University, Shanghai 200092, China;
2 The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China;
3 Department of Electrical and Computer Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583;
4 Institute of Systems Science and Department of Physics, College of Information Science and Engineering, Huaqiao University, Xiamen 361021, China
Abstract  Unveiling the thermal transport properties of various one-dimensional (1D) or quasi-1D materials like nanowires, nanotubes, and nanorods is of great importance both theoretically and experimentally. The dimension or size dependence of thermal conductivity is crucial in understanding the phonon-phonon interaction in the low-dimensional systems. In this paper, we experimentally investigate the size-dependent thermal conductivity of individual single crystalline α-Fe2O3 nanowires collaborating the suspended thermal bridge method and the focused electron-beam self-heating technique, with the sample diameter (d) ranging from 180 nm to 661 nm and length (L) changing from 4.84 μm to 20.73 μm. An empirical relationship for diameter-/length-dependent thermal conductivity is obtained, which shows an approximately linear dependence on the aspect ratio (L/(1+Cd)) at T=300 K, where C is a fitting parameter. This is related to the boundary scattering and diameter effect of α-Fe2O3 nanowires although rigorous calculations are needed to confirm the result.
Keywords:  thermal conductivity      size-dependent      boundary scattering      nanowire  
Received:  25 March 2020      Revised:  30 April 2020      Published:  05 August 2020
PACS:  44.10.+i (Heat conduction)  
  63.22.-m (Phonons or vibrational states in low-dimensional structures and nanoscale materials)  
  63.20.-e (Phonons in crystal lattices)  
Fund: Project supported by the Key-Area Research and Development Program of Guangdong Province, China (Grant No. 2020B010190004), the National Natural Science Foundation of China (Grant Nos. 11674245, 11775158, 11890703, and 11935010), and the Open Fund of Zhejiang Provincial Key Laboratory of Quantum Technology and Device, China (Grant No. 20190301), and the Shanghai Committee of Science and Technology in China (Grant Nos. 17142202100, 17ZR1447900, and 17ZR1432600).
Corresponding Authors:  Nianbei Li, Nianbei Li     E-mail:  nbli@hqu.edu.cn;xuxiangfan@tongji.edu.cn

Cite this article: 

Qilang Wang(王啟浪), Yunyu Chen(陈允玉), Adili Aiyiti(阿地力·艾依提), Minrui Zheng(郑敏锐), Nianbei Li(李念北), Xiangfan Xu(徐象繁) Scaling behavior of thermal conductivity in single-crystalline α-Fe2O3 nanowires 2020 Chin. Phys. B 29 084402

[1] Bertelsen P, Goetz W, Madsen M B, Kinch K M, Hviid S F, Knudsen J M, Gunnlaugsson H P, Merrison J, Nornberg P, Squyres S W, Bell J F, 3rd, Herkenhoff K E, Gorevan S, Yen A S, Myrick T, Klingelhofer G, Rieder R and Gellert R 2004 Science 305 827
[2] Jubb A M and Allen H C 2010 Acs Appl. Mater. Inter. 2 2804
[3] Weiss W, Zscherpel D and Schlogl R 1998 Catal. Lett. 52 215
[4] Faust B C, Hoffmann M R and Bahnemann D W 1989 J. Phys. Chem. 93 6371
[5] Ohmori T, Takahashi H, Mametsuka H and Suzuki E 2000 Phys. Chem. Chem. Phys. 2 3519
[6] Comini E, Faglia G and Sberveglieri G 2001 Sensor. Actuat. B-Chem. 78 73
[7] Comini E, Guidi V, Frigeri C, Ricco I and Sberveglieri G 2001 Sensor. Actuat. B-Chem. 77 16
[8] Gupta A K and Gupta M 2005 Biomaterials 26 3995
[9] del Pino P, Munoz-Javier A, Vlaskou D, Rivera Gil P, Plank C and Parak W J 2010 Nano Lett. 10 3914
[10] Nakamura T 1977 Sol. Energy 19 467
[11] Poizot P, Laruelle S, Grugeon S, Dupont L and Tarascon J M 2000 Nature 407 496
[12] Wan X, Feng W, Wang Y, Wang H, Zhang X, Deng C and Yang N 2019 Nano Lett. 19 3387
[13] Collins P G, Bradley K, Ishigami M and Zettl A 2000 Science 287 1801
[14] Cui Y and Lieber C M 2001 Science 291 851
[15] Hong S and Myung S 2007 Nat. Nanotechnol. 2 207
[16] Chang C W, Okawa D, Majumdar A and Zettl A 2006 Science 314 1121
[17] Xie R G, Bui C T, Varghese B, Zhang Q X, Sow C H, Li B W and Thong J T L 2011 Adv. Funct. Mater. 21 1602
[18] Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A and Cui Y 2008 Nat. Nanotechnol. 3 31
[19] Yang N, Zhang G and Li B W 2010 Nano Today 5 85
[20] Tian B Z, Zheng X L, Kempa T J, Fang Y, Yu N F, Yu G H, Huang J L and Lieber C M 2007 Nature 449 885
[21] Boukai A I, Bunimovich Y, Tahir-Kheli J, Yu J K, Goddard W A 3rd and Heath J R 2008 Nature 451 168
[22] Wen X, Wang S, Ding Y, Wang Z L and Yang S 2005 J. Phys. Chem. B 109 215
[23] Lee Y C, Chueh Y L, Hsieh C H, Chang M T, Chou L J, Wang Z L, Lan Y W, Chen C D, Kurata H and Isoda S 2007 Small 3 1356
[24] Lin Y, Sun F Q, Yuan X Y, Geng B Y and Zhang L D 2004 App. Phys. A 78 1197
[25] Wu J J, Lee Y L, Chiang H H and Wong D K 2006 J. Phys. Chem. B 110 18108
[26] Liu L, Kou H Z, Mo W, Liu H and Wang Y 2006 J. Phys. Chem. B 110 15218
[27] Tang B, Wang G, Zhuo L, Ge J and Cui L 2006 Inorg. Chem. 45 5196
[28] Dong L, Xi Q, Zhou J, Xu X and Li B 2020 Phys. Rev. Appl. 13 034019
[29] Dong L, Xi Q, Chen D, Guo J, Nakayama T, Li Y, Liang Z, Zhou J, Xu X and Li B 2018 Natl. Sci. Rev. 5 500
[30] Shi L, Li D, Yu C, Jang W, Kim D, Yao Z, Kim P and Majumdar A 2003 J. Heat Trans. 125 881
[31] Xu X, Pereira L F, Wang Y, Wu J, Zhang K, Zhao X, Bae S, Tinh Bui C, Xie R, Thong J T, Hong B H, Loh K P, Donadio D, Li B and Ozyilmaz B 2014 Nat. Commun. 5 3689
[32] Kim P, Shi L, Majumdar A and McEuen P L 2001 Phys. Rev. Lett. 87 215502
[33] Guo J, Huang Y, Wu X, Wang Q, Zhou X, Xu X and Li B 2019 Phys. Status Solidi-RRL. 13 1800529
[34] Wang Q, Liang X, Liu B, Song Y, Gao G and Xu X 2020 Nanoscale 12 1138
[35] Aiyiti A, Hu S, Wang C, Xi Q, Cheng Z, Xia M, Ma Y, Wu J, Guo J, Wang Q, Zhou J, Chen J, Xu X and Li B 2018 Nanoscale 10 2727
[36] Liu D, Xie R, Yang N, Li B and Thong J T 2014 Nano Lett. 14 806
[37] Zhao Y, Liu D, Chen J, Zhu L, Belianinov A, Ovchinnikova O S, Unocic R R, Burch M J, Kim S, Hao H, Pickard D S, Li B and Thong J T L 2017 Nat. Commun. 8 15919
[38] Aiyiti A, Bai X, Wu J, Xu X and Li B 2018 Sci. Bull. 63 452
[39] Khitun A, Balandin A and Wang K L 1999 Superlattice. Microst. 26 181
[40] Li D Y, Wu Y Y, Kim P, Shi L, Yang P D and Majumdar A 2003 Appl. Phys. Lett. 83 2934
[41] Chen R, Hochbaum A I, Murphy P, Moore J, Yang P and Majumdar A 2008 Phys. Rev. Lett. 101 105501
[42] Saito K and Dhar A 2010 Phys. Rev. Lett. 104 040601
[43] Wang L, He D and Hu B 2010 Phys. Rev. Lett. 105 160601
[44] Yuldashev Sh U, Yalishev V, Cho H D and Kang T W 2016 J. Nanosci. Nanotechnol. 16 1592
[45] An M, Song Q, Yu X, Meng H, Ma D, Li R, Jin Z, Huang B and Yang N 2017 Nano Lett. 17 5805
[46] Lee V, Wu C H, Lou Z X, Lee W L and Chang C W 2017 Phys. Rev. Lett. 118 135901
[47] Yue S Y, Ouyang T and Hu M 2015 Sci. Rep. 5 15440
[48] Machida Y, Matsumoto N, Isono T, Behnia K 2020 Science 367 309
[49] Majumdar A 1993 J. Heat Trans. 115 7
[50] Hao Q, Xiao Y and Chen Q 2019 Mater. Today Phys. 10 100126
[51] Morse P M 1929 Phys. Rev. 34 57
[1] Mechanically tunable broadband terahertz modulator based on high-aligned Ni nanowire arrays
Wenfeng Xiang(相文峰), Xuan Liu(刘旋), Xiaowei Huang(黄晓炜), Qingli Zhou(周庆莉), Haizhong Guo(郭海中), and Songqing Zhao(赵嵩卿). Chin. Phys. B, 2021, 30(2): 026201.
[2] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[3] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[4] Asymmetric dynamic behaviors of magnetic domain wall in trapezoid-cross-section nanostrip
Xiao-Ping Ma(马晓萍), Hong-Guang Piao(朴红光), Lei Yang(杨磊), Dong-Hyun Kim, Chun-Yeol You, Liqing Pan(潘礼庆). Chin. Phys. B, 2020, 29(9): 097502.
[5] Flux-to-voltage characteristic simulation of superconducting nanowire interference device
Xing-Yu Zhang(张兴雨), Yong-Liang Wang(王永良), Chao-Lin Lv(吕超林), Li-Xing You(尤立星), Hao Li(李浩), Zhen Wang(王镇), Xiao-Ming Xie(谢晓明). Chin. Phys. B, 2020, 29(9): 098501.
[6] Investigation of dimensionality in superconducting NbN thin film samples with different thicknesses and NbTiN meander nanowire samples by measuring the upper critical field
Mudassar Nazir, Xiaoyan Yang(杨晓燕), Huanfang Tian(田焕芳), Pengtao Song(宋鹏涛), Zhan Wang(王战), Zhongcheng Xiang(相忠诚), Xueyi Guo(郭学仪), Yirong Jin(金贻荣), Lixing You(尤立星), Dongning Zheng(郑东宁). Chin. Phys. B, 2020, 29(8): 087401.
[7] Ultra-low thermal conductivity of roughened silicon nanowires: Role of phonon-surface bond order imperfection scattering
Heng-Yu Yang(杨恒玉), Ya-Li Chen(陈亚利), Wu-Xing Zhou(周五星), Guo-Feng Xie(谢国锋), Ning Xu(徐宁). Chin. Phys. B, 2020, 29(8): 086502.
[8] Optical spin-to-orbital angular momentum conversion instructured optical fields
Yang Zhao(赵阳), Cheng-Xi Yang(阳成熙), Jia-Xi Zhu(朱家玺), Feng Lin(林峰), Zhe-Yu Fang(方哲宇), Xing Zhu(朱星). Chin. Phys. B, 2020, 29(6): 067301.
[9] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[10] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[11] Comparative study on transport properties of N-, P-, and As-doped SiC nanowires: Calculated based on first principles
Ya-Lin Li(李亚林), Pei Gong(龚裴), Xiao-Yong Fang(房晓勇). Chin. Phys. B, 2020, 29(3): 037304.
[12] Tuning thermal transport via phonon localization in nanostructures
Dengke Ma(马登科), Xiuling Li(李秀玲), and Lifa Zhang(张力发). Chin. Phys. B, 2020, 29(12): 126502.
[13] Lattice thermal conductivity of β12 and χ3 borophene
Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰). Chin. Phys. B, 2020, 29(12): 126503.
[14] Thermoelectric properties of orthorhombic silicon allotrope Si (oP32) from first-principles calculations
Pei Zhang(张培), Tao Ouyang(欧阳滔), Chao Tang(唐超), Chao-Yu He(何朝宇), Jin Li(李金), Chun-Xiao Zhang(张春小), and Jian-Xin Zhong(钟建新). Chin. Phys. B, 2020, 29(11): 118401.
[15] Visualization of tunnel magnetoresistance effect in single manganite nanowires
Yang Yu(郁扬), Wenjie Hu(胡雯婕), Qiang Li(李强), Qian Shi(时倩), Yinyan Zhu(朱银燕), Hanxuan Lin(林汉轩), Tian Miao(苗田), Yu Bai(白羽), Yanmei Wang(王艳梅), Wenting Yang(杨文婷), Wenbin Wang(王文彬), Hangwen Guo(郭杭闻), Lifeng Yin(殷立峰), Jian Shen(沈健). Chin. Phys. B, 2020, 29(1): 018501.
No Suggested Reading articles found!