Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 070301    DOI: 10.1088/1674-1056/ab90ee
GENERAL Prev   Next  

Single-photon scattering controlled by an imperfect cavity

Liwei Duan(段立伟)1, Qing-Hu Chen(陈庆虎)1,2
1 Department of Physics and Zhejiang Province Key Laboratory of Quantum Technology and Device, Zhejiang University, Hangzhou 310027, China;
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
Abstract  We study the single-photon transport in the coupled-resonator waveguide (CRW) controlled by an imperfect cavity. A Lorentzian spectrum is introduced to describe the dissipation. We find that the probability current conservation can be broken, although the imperfect cavity is a Hermitian system. The coupling strength between the imperfect cavity and the CRW has significant influences near the resonant frequency. With the increase of the coupling strength, the transmission coefficient becomes smaller. The spectral width plays a dominant role under the off-resonant condition, where the transmission coefficient is greatly suppressed with the increase of the spectral width. We also observe an abrupt jump of the transmission and reflection coefficients when the hopping amplitude is large enough. All the distinctive behaviors are closely related to the complex effective potential induced by the imperfect cavity.
Keywords:  single-photon scattering      coupled-resonator waveguide      imperfect cavity  
Received:  16 March 2020      Revised:  09 April 2020      Published:  05 July 2020
PACS:  03.65.Nk (Scattering theory)  
  03.67.Lx (Quantum computation architectures and implementations)  
  42.50.-p (Quantum optics)  
  42.79.Gn (Optical waveguides and couplers)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11834005 and 11674285).
Corresponding Authors:  Qing-Hu Chen     E-mail:

Cite this article: 

Liwei Duan(段立伟), Qing-Hu Chen(陈庆虎) Single-photon scattering controlled by an imperfect cavity 2020 Chin. Phys. B 29 070301

[1] Davidovich L, Maali A, Brune M, Raimond J M and Haroche S 1993 Phys. Rev. Lett. 71 2360
[2] Orrit M 2007 Nat. Phys. 3 755
[3] Chen W L, Beck K M, Bücker R, Gullans M, Lukin M D, Tanji-Suzuki H and Vuletić V 2013 Science 341 768
[4] O’Shea D, Junge C, Volz J and Rauschenbeutel A 2013 Phys. Rev. Lett. 111 193601
[5] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[6] Kimble H J 2008 Nature 453 1023
[7] Duan L M and Monroe C 2010 Rev. Mod. Phys. 82 1209
[8] Ritter S, Nölleke C, Hahn C, Reiserer A, Neuzner A, Uphoff M, Mücke M, Figueroa E, Bochmann J and Rempe G 2012 Nature 484 195
[9] Shen J T and Fan S H 2005 Phys. Rev. Lett. 95 213001
[10] Zhou L, Gong Z R, Liu Y X, Sun C P and Nori F 2008 Phys. Rev. Lett. 101 100501
[11] Fan S H 2002 Appl. Phys. Lett. 80 908
[12] Xu Y, Li Y, Lee R K and Yariv A 2000 Phys. Rev. E 62 7389
[13] Shen J T and Fan S H 2005 Opt. Lett. 30 2001
[14] Shen J T and Fan S H 2009 Phys. Rev. A 79 023837
[15] Shen J T and Fan S H 2009 Phys. Rev. A 79 023838
[16] Tian W, Chen B and Xu W D 2012 Chin. Phys. Lett. 29 030302
[17] Zhou L, Yang L P, Li Y and Sun C P 2013 Phys. Rev. Lett. 111 103604
[18] Bello M, Platero G, Cirac J I and González-Tudela A 2019 Sci. Adv. 5 eaaw0297
[19] Zhang L L, Zhan G H, He J, Zhang Y and Gong W J 2019 Phys. Scripta 94 085216
[20] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
[21] Ge L, Chong Y D and Stone A D 2012 Phys. Rev. A 85 023802
[22] Wu H Z, Yang X B, Tang Y, Tang X P, Deng D M, Liu H Z and Wei Z C 2019 Ann. Phys. 531 1900120
[23] Zhou Y H, Zhang X Y, Zou D D, Wu Q C, Ye B L, Fang Y L, Shen H Z and Yang C P 2020 Opt. Express 28 1249
[24] Forn-Díaz P, Lamata L, Rico E, Kono J and Solano E 2019 Rev. Mod. Phys. 91 025005
[25] Braak D, Chen Q H, Batchelor M T and Solano E 2016 J. Phys. A: Math. Gen. 49 300301
[26] Zhang Z Y, Dong Y L, Zhang S L and Zhu S Q 2013 Opt. Express 21 20786
[27] Gu L M 2012 Chin. Phys. Lett. 29 104206
[28] Ren X X, Li H K, Yan M Y, Liu Y C, Xiao Y F and Gong Q H 2013 Phys. Rev. A 87 033807
[29] Jia W Z and Wang Z D 2013 Phys. Rev. A 88 063821
[30] Qiao L 2017 Phys. Rev. A 96 013860
[31] Yan C H and Wei L F 2015 Opt. Express 23 10374
[32] Breuer H P and Petruccione F 2002. The theory of open quantum systems (New York: Oxford University Press) pp. 466-471
[33] Witthaut D and Sørensen A S 2010 New J. Phys. 12 043052
[34] Jin L and Song Z 2012 Phys. Rev. A 85 012111
[35] Zhu B G, Lü R and Chen S 2015 Phys. Rev. A 91 042131
[36] Dalibard J, Castin Y and Mølmer K 1992 Phys. Rev. Lett. 68 580
[37] Carmichael H J 1993 Phys. Rev. Lett. 70 2273
[38] Song F, Yao S Y and Wang Z 2019 Phys. Rev. Lett. 123 170401
[39] Cao X, You J Q, Zheng H and Nori F 2011 New J. Phys. 13 073002
[40] Bellomo B, Franco R L and Compagno G 2007 Phys. Rev. Lett. 99 160502
[41] Wang C and Chen Q H 2013 New J. Phys. 15 103020
[42] Esfandiarpour S, Safari H and Buhmann S Y 2019 J. Phys. B 52 085503
[1] Single-photon scattering by two separated atoms in a supercavity
Wei Zhu(朱伟), Xiao Xiao(肖骁), Duan-Lu Zhou(周端陆), Peng Zhang(张芃). Chin. Phys. B, 2016, 25(6): 064203.
No Suggested Reading articles found!