Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 070502    DOI: 10.1088/1674-1056/ab90ea
GENERAL Prev   Next  

Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system

Li-Li Wang(王丽丽)1, Wen-Jun Liu(刘文军)1,2
1 State Key Laboratory of Information Photonics and Optical Communications, and School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  A coupled (2+1)-dimensional variable coefficient Ginzburg-Landau equation is studied. By virtue of the modified Hirota bilinear method, the bright one-soliton solution of the equation is derived. Some phenomena of soliton propagation are analyzed by setting different dispersion terms. The influences of the corresponding parameters on the solitons are also discussed. The results can enrich the soliton theory, and may be helpful in the manufacture of optical devices.
Keywords:  soliton      modified Hirota bilinear method      Ginzburg-Landau equation      bright soliton solution  
Received:  22 March 2020      Revised:  19 April 2020      Published:  05 July 2020
PACS:  05.45.Yv (Solitons)  
  42.65.Tg (Optical solitons; nonlinear guided waves)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674036 and 11875008), Beijing Youth Top Notch Talent Support Program, China (Grant No. 2017000026833ZK08), Fund of State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications, Grant No. IPOC2019ZZ01), Fundamental Research Funds for the Central Universities, China (Grant No. 500419305).
Corresponding Authors:  Wen-Jun Liu     E-mail:  jungliu@bupt.edu.cn

Cite this article: 

Li-Li Wang(王丽丽), Wen-Jun Liu(刘文军) Stable soliton propagation in a coupled (2+1) dimensional Ginzburg-Landau system 2020 Chin. Phys. B 29 070502

[1] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 142
[2] Hasegawa A and Tappert F 1973 Appl. Phys. Lett. 23 171
[3] Xu W C, Guo Q and Liu S H 1997 Chin. Phys. Lett. 14 298
[4] Ikeda H, Matsumoto M and Hasegawa A 1997 J. Opt. Soc. Am. B 14 136
[5] Kishore K, Lowry C and Lee C H 1999 Opt. Lett. 24 445
[6] Vinoj M N, Kuriakose V C and Porsezian K 2001 Chaos Soliton. Frac. 12 2569
[7] Hernandez T C, Villargan V E, Serkin V N, Aguero G M, Belyaeva T L, Pena M R and Morales L L 2005 Quantum Electron. 35 778
[8] Tenorio C H, Vargas E V, Serkin V N, Granados M A, Belyaeva T L, Moreno R P and Lara L M 2005 Quantum Electron. 35 929
[9] Zhou Z, Yu H Y, Ao S M and Yan J R 2010 Commun. Theor. Phys. 54 98
[10] Liu W J, Pang L H, Han H N, Shen Z W, Lei M, Teng H and Wei Z Y 2016 Photon. Res. 4 111
[11] Liu W J, Yu W T, Yang C Y, Liu M L, Zhang Y J and Lei M 2017 Nonlinear Dyn. 89 2933
[12] Zhang Y J, Yang C Y, Yu W T, Liu M L, Ma G L and Liu W J 2018 Opt. Quant. Electron. 50 295
[13] Yu W T, Zhou Q, Mirzazadeh M, Liu W J and Biswas A 2019 J. Adv. Res. 15 69
[14] Zhang Z, Yang S X and Li B 2019 Chin. Phys. Lett. 36 120501
[15] Roy S and Bhadra S 2008 Commun. Nonlinear. Sci. 13 2157
[16] Mollenauer L F, Stolen R H, Gordon J P 1980 Phys. Rev. Lett. 45 1095
[17] Liu X Y, Luan Z T, Zhou Q, Liu W J and Biswas A 2019 Chin. J. Phys. 61 310
[18] Liu W J, Zhang Y J, Wazwaz A M and Zhou Q 2019 Appl. Math. Comput. 361 325
[19] Blow K J, Doran N J and Nayar B K 1989 Opt. Lett. 14 754
[20] Jacob J M, Golovchenko E A, Pilipetskii A N, Carter G M and Menyuk C R 1997 IEEE Photonic. Tech. Lett. 9 130
[21] Matera F and Settembre M 1997 Opt. Quant. Electron. 29 21
[22] Kohl R, Biswas A, Milovic D and Zerrad E 2008 Opt. Laser. Technol. 40 647
[23] Wang Y Y, Zhang Y P and Dai C Q 2016 Nonlinear Dyn. 83 1331
[24] Yepez-Martinez H and Gomez-Aguilar J F 2019 Eur. Phys. J. Plus 134 93
[25] Wazwaz A M 2017 Math. Method Appl. Sci. 40 4128
[26] Liu W J, Zhang Y J, Luan Z T, Zhou Q, Mirzazadeh M, Ekici M and Biswas A 2019 Nonlinear Dyn. 96 729
[27] Liu X Y, Liu W J, Triki H, Zhou Q and Biswas A 2019 Nonlinear Dyn. 96 801
[28] Zhang Z, Yang X Y, Li W T and Li B 2019 Chin. Phys. B 28 110201
[29] Jiao X Y, Jia M and An H L 2019 Acta. Phys. Sin. 68 140201 (in Chinese)
[30] Cen F J, Zhao Y N, Fang S Y, Meng H and Yu J 2019 Chin. Phys. B 28 090201
[31] Xu T and Chen Y 2018 Commun Nonlinear Sci Numer Simul 57 276
[32] Zhang Z, Yang X Y and Li B 2020 Appl. Math. Lett. 103 106168
[33] Dong J J, Li B and Yuen M 2020 Commun. Theor. Phys. 72 025002
[34] Yang C Y, Liu W J, Zhou Q, Mihalache D and Malomed B A 2019 Nonlinear Dyn. 95 369
[35] Kudryashov N A 2020 Appl. Math. Comput. 371 124972
[36] Saut J C and Segata J I 2020 J. Math. Anal. Appl. 483 123638
[37] Sharma D, Singla R K and Goyal K 2019 Int. J. Mod. Phys. A 30 1950101
[38] Herr S and Sohinger V 2019 Commun. Contemp. Math. 21 1850058
[39] D'Ambroise J and Kevrekidis P G 2019 Phys. Scr. 94 115203
[40] Wang B, Zhang Z and Li B A 2020 Chin. Phys. Lett. 37 030501
[41] Liu Y K and Li B A 2017 Chin. Phys. Lett. 34 010202
[42] Meng L Z, Qin Y H, Zhao L C and Yang Z Y 2019 Chin. Phys. B 28 060502
[43] Silem A, Zhang C and Zhang D J 2019 Chin. Phys. B 28 020202
[44] Chen M, Li B and Yu Y X 2019 Commun. Theor. Phys. 71 27
[45] Tasbozan O, Kurt A and Tozar A 2019 Appl. Phys. B 125 104
[46] Segel L A 1969 J. Fluid. Mech. 38 203
[47] Newell A C and Whitehead J A 1969 J. Fluid. Mech. 38 279
[48] Huang L G, Pang L H, Wong P, Li Y Q, Bai S Y, Lei M and Liu W J 2016 Ann. Phys. 528 493
[49] Ouyang Q and Flesselles J M 1996 Nature 379 143
[50] Gradov O M, Stenflo L and Yu M Y 1993 Phys. Fluids. B 5 1922
[51] Dubin D H E and O'Neil T M 1999 Rev. Mod. Phys. 71 87
[52] Qu Q X, Zhang L, Liu X Y, Qi F H and Meng X H 2018 Mod. Phys. Lett. B 32 1850286
[1] Polarization manipulation of bright-dark vector bisolitons
Yan Zhou(周延), Xiaoyan Lin(林晓艳), Meisong Liao(廖梅松), Guoying Zhao(赵国营), and Yongzheng Fang(房永征). Chin. Phys. B, 2021, 30(3): 034208.
[2] Soliton interactions and asymptotic state analysis in a discrete nonlocal nonlinear self-dual network equation of reverse-space type
Cui-Lian Yuan(袁翠连) and Xiao-Yong Wen(闻小永). Chin. Phys. B, 2021, 30(3): 030201.
[3] Analysis of dark soliton generation in the microcavity with mode-interaction
Xin Xu(徐昕), Xueying Jin(金雪莹), Jie Cheng(程杰), Haoran Gao(高浩然), Yang Lu(陆洋), and Liandong Yu(于连栋). Chin. Phys. B, 2021, 30(2): 024210.
[4] Interaction properties of solitons for a couple of nonlinear evolution equations
Syed Tahir Raza Rizvi, Ishrat Bibi, Muhammad Younis, and Ahmet Bekir. Chin. Phys. B, 2021, 30(1): 010502.
[5] Exact soliton solutions in anisotropic ferromagnetic wires with Dzyaloshinskii-Moriya interaction
Qiu-Yan Li(李秋艳), Dun-Zhao(赵敦), and Zai-Dong Li(李再东). Chin. Phys. B, 2021, 30(1): 017504.
[6] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
[7] A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures
Sen-Yue Lou(楼森岳). Chin. Phys. B, 2020, 29(8): 080502.
[8] Four-soliton solution and soliton interactions of the generalized coupled nonlinear Schrödinger equation
Li-Jun Song(宋丽军), Xiao-Ya Xu(徐晓雅), Yan Wang(王艳). Chin. Phys. B, 2020, 29(6): 064211.
[9] Effect of dark soliton on the spectral evolution of bright soliton in a silicon-on-insulator waveguide
Zhen Liu(刘振), Wei-Guo Jia(贾维国), Hong-Yu Wang(王红玉), Yang Wang(汪洋), Neimule Men-Ke(门克内木乐), Jun-Ping Zhang(张俊萍). Chin. Phys. B, 2020, 29(6): 064212.
[10] Bose-Einstein condensates in an eightfold symmetric optical lattice
Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威). Chin. Phys. B, 2020, 29(5): 056103.
[11] Pulse shaping of bright-dark vector soliton pair
Yan Zhou(周延), Yuefeng Li(李月锋), Xia Li(李夏), Meisong Liao(廖梅松), Jingshan Hou(侯京山), Yongzheng Fang(房永征). Chin. Phys. B, 2020, 29(5): 054202.
[12] Nonlinear continuous bi-inductance electrical line with dissipative elements: Dynamics of the low frequency modulated waves
S M Ngounou, F B Pelap. Chin. Phys. B, 2020, 29(4): 040502.
[13] Dynamics of the plane and solitary waves in a Noguchi network: Effects of the nonlinear quadratic dispersion
S A T Fonkoua, M S Ngounou, G R Deffo, F B Pelap, S B Yamgoue, A Fomethe. Chin. Phys. B, 2020, 29(3): 030501.
[14] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[15] Dynamical interactions between higher-order rogue waves and various forms of n-soliton solutions (n → ∞) of the (2+1)-dimensional ANNV equation
Md Fazlul Hoque, Harun-Or-Roshid, and Fahad Sameer Alshammari. Chin. Phys. B, 2020, 29(11): 114701.
No Suggested Reading articles found!