Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078101    DOI: 10.1088/1674-1056/ab90e8
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process

Ya-Dong Li(李亚东)1, Yong-Shan Cheng(程永珊)1, Meng-Jie Su(宿梦洁)1, Qi-Fu Ran(冉启甫)1, Chun-Xiao Wang(王春晓)2, Hong-An Ma(马红安)2, Chao Fang(房超)3, Liang-Chao Chen(陈良超)3
1 College of Electronical Information Engineering, Yangtze Normal University, Chongqing 408100, China;
2 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
3 Key Laboratory of Material Physics of Ministry of Education, School of Physical Engineering, Zhengzhou University, Zhengzhou 450052, China
Abstract  To elucidate the regulation mechanism of catalyst geometry structure to diamond growth, we establish three catalyst modes with different structures. The simulation results show that with the decrease of the protruding height of the catalyst, the low-temperature region gradually moves toward the center of the catalyst, which causes the distribution characteristics of the temperature and convection field in the catalyst to change. The temperature difference in vertical direction of the catalyst decreases gradually and increases in the horizontal direction, while the catalyst convection velocity has the same variation regularity in the corresponding directions. The variation of temperature difference and convection velocity lead the crystal growth rate in different crystal orientations to change, which directly affects the crystal morphology of the synthetic diamond. The simulation results are consistent with the experimental results, which shows the correctness of the theoretical rational analysis. This work is expected to be able to facilitate the understanding of catalyst structure regulation mechanism on diamond morphology and the providing of an important theoretical basis for the controllable growth of special crystal shape diamond under HPHT process.
Keywords:  diamond      single crystal growth      high pressure and high temperature      crystal morphology  
Received:  25 March 2020      Revised:  27 April 2020      Accepted manuscript online: 
PACS:  81.05.ug (Diamond)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804305), the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyj-msxmX0391), the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant No. KJ201901405), and the Open Project of State Key Laboratory of Superhard Materials, Jilin University, China (Grant No. 201912).
Corresponding Authors:  Liang-Chao Chen     E-mail:  yznu_lyd@163.com

Cite this article: 

Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超) Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process 2020 Chin. Phys. B 29 078101

[1] Barletta M, Rubino G, Valle R and Polini R 2012 ACS Appl. Mater. Interfaces 4 694
[2] Masuya S, Hanada K, Oshima T, Sumiya H and Kasu M 2017 Diamond Relat. Mater 75 155
[3] Pezzagna S, Rogalla D, Wildanger D, Meijer J and Zaitsev A 2011 New J. Phys. 13 035024
[4] Liu X B, Jia X P, Zhang Z F, Li Y, Hu M H, Zhou Z X and Ma H A 2011 Cryst. Growth. 11 3844
[5] Kanda H, Akaishi M and Yamaoka S 1999 Diamond Relat. Mater. 8 1441
[6] Fuchs G D, Burkard G, Klimov P V and Awschalom D D 2011 Nat. Phys. 7 789
[7] Achatz P, Williams O A, Bruno P, Gruen D M, Garrido J A and Stutzmann M 2006 Phys. Rev. B 74 155429
[8] Chen Y L, Guo H, Li W W, Wu D J, Zhu Q, Zhao B B, Wang L, Zhang Y, Zhao Y, Liu W Y, Du F F, Tang J and Liu J 2018 Appl. Phys. Express 11 123001
[9] Qin Y K, Xiao H Y, Liu L N, Sun R R, Hu Q B, Bao Z G, Zhang Y S, Li S S and Jia X P 2019 Acta Phys. Sin. 68 020701 (in Chinese)
[10] Maze J R, Cappellaro P, Childress L, Dutt M V G, Hodges J S, Hong S, Jiang L, Stanwix P L, Taylor J M, Togan E, Zibrov A S, Hemmer P, Yacoby A, Walsworth R L and Lukin M D 2009 Adv. Opt. Concepts Quantum Comput. Memory Commun. Ⅱ 7225 722509
[11] Palyanov Y N, Kupriyanov I N, Borzdov Y M, Khokhryakov A F and Surovtsev N V 2016 Cryst. Growth. 16 3510
[12] Fang C, Jia X P, Chen N, Li Y D, Guo L S, Chen L C, Ma H A and Liu X B 2016 J. Cryst. Growth 436 36
[13] Han F, Li S S, Jia X F, Chen W Q, Su T C, Hu M H, Yu K P, Wang J K, Wu Y M, Ma H A and Jia X P 2019 Chin. Phys. B 28 028103
[14] Chen L C, Miao X Y, He X M, Guo L S, Fang S, Wang Y, Wang Z K, Fang C, Ma H A and Jia X P 2018 J. Cryst. Growth 498 67
[15] Wang J K, Li S S, Jiang Q W, Song Y L, Yu K P, Han F, Su T C, Hu M H, Hu Q, Ma H A, Jia X P and Xiao H Y 2018 Chin. Phys. B 27 088102
[16] Sumiya H and Tamasaku K 2012 Jpn. J. Appl. Phys. 51 090102
[17] Xiao H Y, Qin Y K, Liu L N, Bao Z G, Tang C J, Sun R R, Zhang Y S, Li S S and Jia X P 2018 Acta Phys. Sin. 67 140702 (in Chinese)
[18] Kovalenko T V, Lysakovskyi V V, Kvasnytsya V M, Ivakhnenko S O, Suprun O M and Burchenia A V 2019 J. Cryst. Growth 507 327
[19] Wang J Z, Li S S, Su T C, Hu M H, Hu Q, Wu Y M, Wang J K, Han F, Yu K P, Gao G J, Guo M M, Jia X P, Ma H A and Xiao H Y 2018 Acta Phys. Sin. 67 168101 (in Chinese)
[20] Tatsumi N, Tamasaku K, Ito T and Sumiya H 2017 J. Cryst. Growth 458 27
[21] Burns R C, Hansen J O, Spits R A, Sibanda M, Welbourn C M and Welch D L 1999 Diamond Relat. Mater. 8 1433
[22] Fan X H, Xu B, Niu Z, Zhai T G and Tian B 2012 Chin. Phys. Lett. 29 048102
[23] Li Y, Li Y D, Wang Y, Zhang J, Song M S, She Y C and Chen X Z 2018 CrystEngComm 20 4127
[24] Shiryaev A A, Zolotov D A, Suprun O M, Ivakhnenko S A, Averin A A, Buzmakov A V, Lysakovskyi V V, Dyachkova I G and Asadchikov V E 2018 CrystEngComm 20 7700
[25] Li Y D, Jia X P, Chen N, Chen L C, Guo L S, Wang C X, Li G and Ma H A 2017 CrystEngComm 19 137
[26] Li Y D, Wang C X, Chen L C, Guo L S, Zhang Z F, Fang C and Ma H A 2019 RSC Adv. 9 32205
[27] Li R, Ding M M and Shi T F 2018 J. Cryst. Growth 491 111
[28] Han Q G, Li M Z, Jia X P, Ma H A and Li Y F 2011 Diamond Relat. Mater. 20 969
[29] Li R, Wang Y F, Liu J, Jia X P and Ma H A 2020 Diamond Relat. Mater. 101 107593
[1] In situ study of calcite-III dimorphism using dynamic diamond anvil cell
Xia Zhao(赵霞), Sheng-Hua Mei(梅升华), Zhi Zheng(郑直), Yue Gao(高悦), Jiang-Zhi Chen(陈姜智), Yue-Gao Liu(刘月高), Jian-Guo Sun(孙建国), Yan Li(李艳), and Jian-Hui Sun(孙建辉). Chin. Phys. B, 2022, 31(9): 096201.
[2] Determination of band alignment between GaOx and boron doped diamond for a selective-area-doped termination structure
Qi-Liang Wang(王启亮), Shi-Yang Fu(付诗洋), Si-Han He(何思翰), Hai-Bo Zhang(张海波),Shao-Heng Cheng(成绍恒), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2022, 31(8): 088104.
[3] Synergistic influences of titanium, boron, and oxygen on large-size single-crystal diamond growth at high pressure and high temperature
Guang-Tong Zhou(周广通), Yu-Hu Mu(穆玉虎), Yuan-Wen Song(宋元文), Zhuang-Fei Zhang(张壮飞), Yue-Wen Zhang(张跃文), Wei-Xia Shen(沈维霞), Qian-Qian Wang(王倩倩), Biao Wan(万彪), Chao Fang(房超), Liang-Chao Chen(陈良超), Ya-Dong Li(李亚东), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 068103.
[4] In-situ ultrasonic calibrations of pressure and temperature in a hinge-type double-stage cubic large volume press
Qingze Li(李青泽), Xiping Chen(陈喜平), Lei Xie(谢雷), Tiexin Han(韩铁鑫), Jiacheng Sun(孙嘉程), and Leiming Fang(房雷鸣). Chin. Phys. B, 2022, 31(6): 060702.
[5] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[6] Dependence of nitrogen vacancy color centers on nitrogen concentration in synthetic diamond
Yong Li(李勇), Xiaozhou Chen(陈孝洲), Maowu Ran(冉茂武), Yanchao She(佘彦超), Zhengguo Xiao(肖政国), Meihua Hu(胡美华), Ying Wang(王应), and Jun An(安军). Chin. Phys. B, 2022, 31(4): 046107.
[7] Equal compressibility structural phase transition of molybdenum at high pressure
Lun Xiong(熊伦), Bin Li(李斌), Fang Miao(苗芳), Qiang Li (李强), Guangping Chen(陈光平), Jinxia Zhu(竹锦霞), Yingchun Ding(丁迎春), and Duanwei He(贺端威). Chin. Phys. B, 2022, 31(11): 116102.
[8] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[9] Effect of the codoping of N—H—O on the growth characteristics and defects of diamonds under high temperature and high pressure
Zhenghao Cai(蔡正浩), Bowei Li(李博维), Liangchao Chen(陈良超), Zhiwen Wang(王志文), Shuai Fang(房帅), Yongkui Wang(王永奎), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(10): 108104.
[10] Design of vertical diamond Schottky barrier diode with junction terminal extension structure by using the n-Ga2O3/p-diamond heterojunction
Wang Lin(林旺), Ting-Ting Wang(王婷婷), Qi-Liang Wang(王启亮), Xian-Yi Lv(吕宪义), Gen-Zhuang Li(李根壮), Liu-An Li(李柳暗), Jin-Ping Ao(敖金平), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108105.
[11] Relationship between the spatial position of the seed and growth mode for single-crystal diamond grown with an enclosed-type holder
Wen-Liang Xie(谢文良), Xian-Yi Lv(吕宪义), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Guang-Tian Zou(邹广田). Chin. Phys. B, 2022, 31(10): 108106.
[12] Ohmic and Schottky contacts of hydrogenated and oxygenated boron-doped single-crystal diamond with hill-like polycrystalline grains
Jing-Cheng Wang(王旌丞), Hao Chen(陈浩), Lin-Feng Wan(万琳丰), Cao-Yuan Mu(牟草源), Yao-Feng Liu(刘尧峰), Shao-Heng Cheng(成绍恒), Qi-Liang Wang(王启亮), Liu-An Li(李柳暗), and Hong-Dong Li(李红东). Chin. Phys. B, 2021, 30(9): 096803.
[13] Synthesis and characterizations of boron and nitrogen co-doped high pressure and high temperature large single-crystal diamonds with increased mobility
Xin-Yuan Miao(苗辛原), Hong-An Ma(马红安), Zhuang-Fei Zhang(张壮飞), Liang-Chao Chen(陈良超), Li-Juan Zhou(周丽娟), Min-Si Li(李敏斯), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(6): 068102.
[14] Effect of metal nanoparticle doping concentration on surface morphology and field emission properties of nano-diamond films
Yao Wang(王垚), Sheng-Wang Yu(于盛旺), Yan-Peng Xue(薛彦鹏), Hong-Jun Hei(黑鸿君), Yan-Xia Wu(吴艳霞), and Yan-Yan Shen(申艳艳). Chin. Phys. B, 2021, 30(6): 068101.
[15] Enhanced interface properties of diamond MOSFETs with Al2O3 gate dielectric deposited via ALD at a high temperature
Yu Fu(付裕), Rui-Min Xu(徐锐敏), Xin-Xin Yu(郁鑫鑫), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Tang-Sheng Chen(陈堂胜), Bo Yan(延波), Yan-Rong Li(李言荣), Zheng-Qiang Ma(马正强), and Yue-Hang Xu(徐跃杭). Chin. Phys. B, 2021, 30(5): 058101.
No Suggested Reading articles found!