Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 078101    DOI: 10.1088/1674-1056/ab90e8
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process

Ya-Dong Li(李亚东)1, Yong-Shan Cheng(程永珊)1, Meng-Jie Su(宿梦洁)1, Qi-Fu Ran(冉启甫)1, Chun-Xiao Wang(王春晓)2, Hong-An Ma(马红安)2, Chao Fang(房超)3, Liang-Chao Chen(陈良超)3
1 College of Electronical Information Engineering, Yangtze Normal University, Chongqing 408100, China;
2 State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China;
3 Key Laboratory of Material Physics of Ministry of Education, School of Physical Engineering, Zhengzhou University, Zhengzhou 450052, China
Abstract  To elucidate the regulation mechanism of catalyst geometry structure to diamond growth, we establish three catalyst modes with different structures. The simulation results show that with the decrease of the protruding height of the catalyst, the low-temperature region gradually moves toward the center of the catalyst, which causes the distribution characteristics of the temperature and convection field in the catalyst to change. The temperature difference in vertical direction of the catalyst decreases gradually and increases in the horizontal direction, while the catalyst convection velocity has the same variation regularity in the corresponding directions. The variation of temperature difference and convection velocity lead the crystal growth rate in different crystal orientations to change, which directly affects the crystal morphology of the synthetic diamond. The simulation results are consistent with the experimental results, which shows the correctness of the theoretical rational analysis. This work is expected to be able to facilitate the understanding of catalyst structure regulation mechanism on diamond morphology and the providing of an important theoretical basis for the controllable growth of special crystal shape diamond under HPHT process.
Keywords:  diamond      single crystal growth      high pressure and high temperature      crystal morphology  
Received:  25 March 2020      Revised:  27 April 2020      Published:  05 July 2020
PACS:  81.05.ug (Diamond)  
  07.35.+k (High-pressure apparatus; shock tubes; diamond anvil cells)  
  81.10.Aj (Theory and models of crystal growth; physics and chemistry of crystal growth, crystal morphology, and orientation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804305), the Natural Science Foundation of Chongqing, China (Grant No. cstc2019jcyj-msxmX0391), the Science and Technology Research Program of Chongqing Municipal Education Commission, China (Grant No. KJ201901405), and the Open Project of State Key Laboratory of Superhard Materials, Jilin University, China (Grant No. 201912).
Corresponding Authors:  Liang-Chao Chen     E-mail:  yznu_lyd@163.com

Cite this article: 

Ya-Dong Li(李亚东), Yong-Shan Cheng(程永珊), Meng-Jie Su(宿梦洁), Qi-Fu Ran(冉启甫), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Chao Fang(房超), Liang-Chao Chen(陈良超) Regulation mechanism of catalyst structure on diamond crystal morphology under HPHT process 2020 Chin. Phys. B 29 078101

[1] Barletta M, Rubino G, Valle R and Polini R 2012 ACS Appl. Mater. Interfaces 4 694
[2] Masuya S, Hanada K, Oshima T, Sumiya H and Kasu M 2017 Diamond Relat. Mater 75 155
[3] Pezzagna S, Rogalla D, Wildanger D, Meijer J and Zaitsev A 2011 New J. Phys. 13 035024
[4] Liu X B, Jia X P, Zhang Z F, Li Y, Hu M H, Zhou Z X and Ma H A 2011 Cryst. Growth. 11 3844
[5] Kanda H, Akaishi M and Yamaoka S 1999 Diamond Relat. Mater. 8 1441
[6] Fuchs G D, Burkard G, Klimov P V and Awschalom D D 2011 Nat. Phys. 7 789
[7] Achatz P, Williams O A, Bruno P, Gruen D M, Garrido J A and Stutzmann M 2006 Phys. Rev. B 74 155429
[8] Chen Y L, Guo H, Li W W, Wu D J, Zhu Q, Zhao B B, Wang L, Zhang Y, Zhao Y, Liu W Y, Du F F, Tang J and Liu J 2018 Appl. Phys. Express 11 123001
[9] Qin Y K, Xiao H Y, Liu L N, Sun R R, Hu Q B, Bao Z G, Zhang Y S, Li S S and Jia X P 2019 Acta Phys. Sin. 68 020701 (in Chinese)
[10] Maze J R, Cappellaro P, Childress L, Dutt M V G, Hodges J S, Hong S, Jiang L, Stanwix P L, Taylor J M, Togan E, Zibrov A S, Hemmer P, Yacoby A, Walsworth R L and Lukin M D 2009 Adv. Opt. Concepts Quantum Comput. Memory Commun. Ⅱ 7225 722509
[11] Palyanov Y N, Kupriyanov I N, Borzdov Y M, Khokhryakov A F and Surovtsev N V 2016 Cryst. Growth. 16 3510
[12] Fang C, Jia X P, Chen N, Li Y D, Guo L S, Chen L C, Ma H A and Liu X B 2016 J. Cryst. Growth 436 36
[13] Han F, Li S S, Jia X F, Chen W Q, Su T C, Hu M H, Yu K P, Wang J K, Wu Y M, Ma H A and Jia X P 2019 Chin. Phys. B 28 028103
[14] Chen L C, Miao X Y, He X M, Guo L S, Fang S, Wang Y, Wang Z K, Fang C, Ma H A and Jia X P 2018 J. Cryst. Growth 498 67
[15] Wang J K, Li S S, Jiang Q W, Song Y L, Yu K P, Han F, Su T C, Hu M H, Hu Q, Ma H A, Jia X P and Xiao H Y 2018 Chin. Phys. B 27 088102
[16] Sumiya H and Tamasaku K 2012 Jpn. J. Appl. Phys. 51 090102
[17] Xiao H Y, Qin Y K, Liu L N, Bao Z G, Tang C J, Sun R R, Zhang Y S, Li S S and Jia X P 2018 Acta Phys. Sin. 67 140702 (in Chinese)
[18] Kovalenko T V, Lysakovskyi V V, Kvasnytsya V M, Ivakhnenko S O, Suprun O M and Burchenia A V 2019 J. Cryst. Growth 507 327
[19] Wang J Z, Li S S, Su T C, Hu M H, Hu Q, Wu Y M, Wang J K, Han F, Yu K P, Gao G J, Guo M M, Jia X P, Ma H A and Xiao H Y 2018 Acta Phys. Sin. 67 168101 (in Chinese)
[20] Tatsumi N, Tamasaku K, Ito T and Sumiya H 2017 J. Cryst. Growth 458 27
[21] Burns R C, Hansen J O, Spits R A, Sibanda M, Welbourn C M and Welch D L 1999 Diamond Relat. Mater. 8 1433
[22] Fan X H, Xu B, Niu Z, Zhai T G and Tian B 2012 Chin. Phys. Lett. 29 048102
[23] Li Y, Li Y D, Wang Y, Zhang J, Song M S, She Y C and Chen X Z 2018 CrystEngComm 20 4127
[24] Shiryaev A A, Zolotov D A, Suprun O M, Ivakhnenko S A, Averin A A, Buzmakov A V, Lysakovskyi V V, Dyachkova I G and Asadchikov V E 2018 CrystEngComm 20 7700
[25] Li Y D, Jia X P, Chen N, Chen L C, Guo L S, Wang C X, Li G and Ma H A 2017 CrystEngComm 19 137
[26] Li Y D, Wang C X, Chen L C, Guo L S, Zhang Z F, Fang C and Ma H A 2019 RSC Adv. 9 32205
[27] Li R, Ding M M and Shi T F 2018 J. Cryst. Growth 491 111
[28] Han Q G, Li M Z, Jia X P, Ma H A and Li Y F 2011 Diamond Relat. Mater. 20 969
[29] Li R, Wang Y F, Liu J, Jia X P and Ma H A 2020 Diamond Relat. Mater. 101 107593
[1] Raman scattering from highly-stressed anvil diamond
Shan Liu(刘珊), Qiqi Tang(唐琦琪), Binbin Wu(吴彬彬), Feng Zhang(张峰), Jingyi Liu(刘静仪), Chunmei Fan(范春梅), and Li Lei(雷力). Chin. Phys. B, 2021, 30(1): 016301.
[2] Utilizing of high-pressure high-temperature synthesis to enhance the thermoelectric properties of Zn0.98Al0.02O with excellent electrical properties
Qi Chen(陈启), Xinjian Li(李欣健), Yao Wang(王遥), Lijie Chang(常立杰), Jian Wang(王健), Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiaopeng Jia(贾晓鹏). Chin. Phys. B, 2021, 30(1): 016202.
[3] A double-layer heating method to generate high temperature in a two-stage multi-anvil apparatus
Bo Peng(彭博), Zili Kou(寇自力), Mengxi Zhao(赵梦溪), Mingli Jiang(姜明莉), Jiawei Zhang(张佳威), Yipeng Wang(王义鹏), Lu Zhang(张陆). Chin. Phys. B, 2020, 29(9): 090703.
[4] Crystallization and characteristics of {100}-oriented diamond with CH4N2S additive under high pressure and high temperature
Yong Li(李勇), Debing Tan(谭德斌), Qiang Wang(王强), Zhengguo Xiao(肖政国), Changhai Tian(田昌海), Lin Chen(陈琳). Chin. Phys. B, 2020, 29(9): 098103.
[5] Congruent melting of tungsten phosphide at 5 GPa and 3200℃ for growing its large single crystals
Xiao-Jun Xiang(向晓君), Guo-Zhu Song(宋国柱), Xue-Feng Zhou(周雪峰), Hao Liang(梁浩), Yue Xu(徐月), Shi-Jun Qin(覃湜俊), Jun-Pu Wang(王俊普), Fang Hong(洪芳), Jian-Hong Dai(戴建红), Bo-Wen Zhou(周博文), Wen-Jia Liang(梁文嘉), Yun-Yu Yin(殷云宇), Yu-Sheng Zhao(赵予生), Fang Peng(彭放), Xiao-Hui Yu(于晓辉), Shan-Min Wang(王善民). Chin. Phys. B, 2020, 29(8): 088202.
[6] Effects of microwave oxygen plasma treatments on microstructure and Ge-V photoluminescent properties of diamond particles
Ling-Xiao Sheng(盛凌霄), Cheng-Ke Chen(陈成克), Mei-Yan Jiang(蒋梅燕), Xiao Li(李晓), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(8): 088101.
[7] Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread
Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋). Chin. Phys. B, 2020, 29(6): 066101.
[8] Single crystal growth, structural and transport properties of bad metal RhSb2
D S Wu(吴德胜), Y T Qian(钱玉婷), Z Y Liu(刘子懿), W Wu(吴伟), Y J Li(李延杰), S H Na(那世航), Y T Shao(邵钰婷), P Zheng(郑萍), G Li(李岗), J G Cheng(程金光), H M Weng(翁红明), J L Luo(雒建林). Chin. Phys. B, 2020, 29(3): 037101.
[9] High pressure and high temperature induced polymerization of C60 quantum dots
Shi-Hao Ruan(阮世豪), Chun-Miao Han(韩春淼), Fu-Lu Li(李福禄), Bing Li(李冰), Bing-Bing Liu(刘冰冰). Chin. Phys. B, 2020, 29(2): 026402.
[10] Effects of MgSiO3 on the crystal growth and characteristics of type-Ib gem quality diamond in Fe-Ni-C system
Zhi-Yun Lu(鲁智云), Yong-Kui Wang(王永奎), Shuai Fang(房帅), Zheng-Hao Cai(蔡正浩), Zhan-Dong Zhao(赵占东), Chun-Xiao Wang(王春晓), Hong-An Ma(马红安), Liang-Chao Chen(陈良超), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2020, 29(12): 128103.
[11] Synthesis of black phosphorus structured polymeric nitrogen
Ying Liu(刘影)†, Haipeng Su(苏海鹏), Caoping Niu(牛草萍), Xianlong Wang(王贤龙), Junran Zhang(张俊然), Zhongxue Ge(葛忠学), and Yanchun Li(李延春). Chin. Phys. B, 2020, 29(10): 106201.
[12] Two-step high-pressure high-temperature synthesis of nanodiamonds from naphthalene
Tong Liu(刘童), Xi-Gui Yang(杨西贵)†, Zhen Li(李振), Yan-Wei Hu(胡宴伟), Chao-Fan Lv(吕超凡), Wen-Bo Zhao(赵文博), Jin-Hao Zang(臧金浩)‡, and Chong-Xin Shan(单崇新)§. Chin. Phys. B, 2020, 29(10): 108102.
[13] Growth characteristics of type IIa large single crystal diamond with Ti/Cu as nitrogen getter in FeNi-C system
Ming-Ming Guo(郭明明), Shang-Sheng Li(李尚升), Mei-Hua Hu(胡美华), Tai-Chao Su(宿太超), Jun-Zuo Wang(王君卓), Guang-Jin Gao(高广进), Yue You(尤悦), Yuan Nie(聂媛). Chin. Phys. B, 2020, 29(1): 018101.
[14] Influences of grain size and microstructure on optical properties of microcrystalline diamond films
Jia-Le Wang(王家乐), Cheng-Ke Chen(陈成克), Xiao Li(李晓), Mei-Yan Jiang(蒋梅燕), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(1): 018103.
[15] Characteristics of urea under high pressure and high temperature
Shuai Fang(房帅), Hong-An Ma(马红安), Long-Suo Guo(郭龙锁), Liang-Chao Chen(陈良超), Yao Wang(王遥), Lu-Yao Ding(丁路遥), Zheng-Hao Cai(蔡正浩), Jian Wang(王健), Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2019, 28(9): 098101.
No Suggested Reading articles found!