Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067601    DOI: 10.1088/1674-1056/ab8dac
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films

Fanqing Lin(林凡庆)1, Shouheng Zhang(张守珩)1, Guoxia Zhao(赵国霞)1, Hongfei Li(李洪飞)2, Weihua Zong(宗卫华)2, Shandong Li(李山东)1
1 College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China;
2 School of Electronics and Information, Qingdao University, Qingdao 266071, China
Abstract  Nowadays the yttrium iron garnet (Y3Fe5O12, YIG) films are widely used in the microwave and spin wave devices due to their low damping constant and long propagation distance for spin waves. However, the performances, especially the frequency stability, are seriously affected by the relaxation of the interface magnetic moments. In this study, the effect of out-of-plane magnetization depinning on the resonance frequency shift (Δfr) was investigated for 3-μm YIG films grown on Gd3Ga5O12 (GGG) (111) substrates by liquid-phase epitaxy. It is revealed that the ferromagnetic resonance (FMR) and spin wave propagation exhibit a very slow relaxation with relaxation time τ even longer than one hour under an out-of-plane external magnetic bias field. The Δfr span of 15.15-24.70 MHz is observed in out-of-plane FMR and forward volume spin waves. Moreover, the Δfr and τ depend on the magnetic field. The Δfr can be attributed to that the magnetic moments break away from the pinning layer at the YIG/GGG interface. The thickness of the pinning layer is estimated to be about 9.48 nm to 15.46 nm according to the frequency shifting. These results indicate that Δfr caused by the pinning layer should be addressed in the design of microwave and spin wave devices, especially in the transverse magnetic components.
Keywords:  yttrium iron garnet (YIG)      magnetization relaxation      ferromagnetic resonance      spin waves     
Received:  30 March 2020      Published:  05 June 2020
PACS:  76.50.+g (Ferromagnetic, antiferromagnetic, and ferrimagnetic resonances; spin-wave resonance)  
  85.70.Ge (Ferrite and garnet devices)  
  75.10.Hk (Classical spin models)  
  75.25.-j (Spin arrangements in magnetically ordered materials (including neutron And spin-polarized electron studies, synchrotron-source x-ray scattering, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674187 and 51871127) and Technology on Electronic Test & Measurement Laboratory (Grant No. 6142001180103).
Corresponding Authors:  Shandong Li     E-mail:  lishd@qdu.edu.cn

Cite this article: 

Fanqing Lin(林凡庆), Shouheng Zhang(张守珩), Guoxia Zhao(赵国霞), Hongfei Li(李洪飞), Weihua Zong(宗卫华), Shandong Li(李山东) Effect of interface magnetization depinning on the frequency shift of ferromagnetic and spin wave resonance in YIG/GGG films 2020 Chin. Phys. B 29 067601

[1] Chumak A V, Vasyuchka V I, Serga A A and Hillebrands B 2015 Nat. Phys. 11 453
[2] Zhao X E, Hu Z Q, Yang Q, Peng B, Zhou Z Y and Liu M 2018 Chin. Phys. B 27 97505
[3] Kruglyak V V, Demokritov S O and Grundler D 2010 J. Phys. D: Appl. Phys. 43 264001
[4] Gu W J, Pan J and Hu J G 2012 Acta Phys. Sin. 61 167501 (in Chinese)
[5] Davies C S, Francis A, Sadovnikov A V, Chertopalov S V, Bryan M T, Grishin S V, Allwood D A, Sharaevskii Y P, Nikitov S A and Kruglyak V V 2015 Phys. Rev. B 92 020408
[6] Demidov V E, Urazhdin S, Zholud A, Sadovnikov A V, Slavin A N and Demokritov S O 2015 Sci. Rep. 5 8578
[7] Sadovnikov A V, Beginin E N, Odincov S A, Sheshukova S E, Sharaevskii Y P, Stognij A I and Nikitov S A 2016 Appl. Phys. Lett. 108 172411
[8] Shi Z P, Liu X M and Li S D 2017 Chin. Phys. B 26 097601
[9] Sadovnikov A V, Grachev A A, Sheshukova S E, Sharaevskii Y P, Serdobintsev A A, Mitin D M and Nikitov S A 2018 Phys. Rev. Lett. 120 257203
[10] Sadovnikov A V, Beginin E N, Sheshukova S E, Sharaevskii Y P, Stognij A I, Novitski N N, Sakharov V K, Khivintsev Y V and Nikitov S A 2019 Phys. Rev. B 99 054424
[11] Serga A A, Chumak A V and Hillebrands B 2010 J. Phys. D: Appl. Phys. 43 264002
[12] Lenk B, Ulrichs H, Garbs F and Munzenberg M 2011 Phys. Rep. 507 107
[13] Nikitov S A, Kalyabin D V, Lisenkov I V, Slavin A, Barabanenkov Y N, Osokin S A, Sadovnikov A V, Beginin E N, Morozova M A, Sharaevsky Y P, Filimonov Y A, Khivintsev Y V, Vysotsky S L, Sakharov V K and Pavlov E S 2015 Phys. Usp. 58 1002
[14] Chumak A V, Serga A A and Hillebrands B 2017 J. Phys. D: Appl. Phys. 50 244001
[15] Qin H J, Hamalainen S J, Arjas K, Witteveen J and van Dijken S 2018 Phys. Rev. B 98 224422
[16] Lv G, Zhang H and Hou Z W 2018 Acta Phys. Sin. 67 177502 (in Chinese)
[17] Qiu Z Y and Hou D Z 2019 Chin. Phys. B 28 88504
[18] Vogt K, Fradin F Y, Pearson J E, Sebastian T, Bader S D, Hillebrands B, Hoffmann A and Schultheiss H 2014 Nat. Commun. 5 3727
[19] Chumak A V, Serga A A and Hillebrands B 2014 Nat. Commun. 5 4700
[20] Wagner K, Kakay A, Schultheiss K, Henschke A, Sebastian T and Schultheiss H 2016 Nat. Nanotechnol. 11 432
[21] Ganzhorn K, Klingler S, Wimmer T, Geprags S, Gross R, Huebl H and Goennenwein S T B 2016 Appl. Phys. Lett. 109 022405
[22] Bang W, Lim J, Trossman J, Tsai C C and Ketterson J B 2018 J. Magn. Magn. Mater. 456 241
[23] Klingler S, Amin V, Geprags S, Ganzhorn K, Maier-Flaig H, Althammer M, Huebl H, Gross R, McMichael R D, Stiles M D, Goennenwein S T B and Weiler M 2018 Phys. Rev. Lett. 120 127201
[24] Klingler S, Pirro P, Brächer T, Leven B, Hillebrands B and Chumak A V 2015 Appl. Phys. Lett. 106 212406
[25] Mihalceanu L, Vasyuchka V I, Bozhko D A, Langner T, Nechiporuk A Y, Romanyuk V F, Hillebrands B and Serga A A 2018 Phys. Rev. B 97 214405
[26] Wang G, Liu H F, Wu H, Li X N, Qiu H C, Yang Y, Qu B J, Ren T L, Han X F, Zhang R Y and Wang H 2016 Appl. Phys. Lett. 109 162405
[27] Gallagher J C, Yang A S, Brangham J T, Esser B D, White S P, Page M R, Meng K Y, Yu S S, Adur R, Ruane W, Dunsiger S R, McComb D W, Yang F Y and Hammel P C 2016 Appl. Phys. Lett. 109 072401
[28] Howe B M, Emori S, Jeon H M, Oxholm T M, Jones J G, Mahalingam K, Zhuang Y, Sun N X and Brown G J 2015 IEEE Magn. Lett. 6 3500504
[29] Lee S, Grudichak S, Sklenar J, Tsai C C, Jang M, Yang Q H, Zhang H W and Ketterson J B 2016 J. Appl. Phys. 120 033905
[30] Kajiwara Y, Harii K, Takahashi S, Ohe J, Uchida K, Mizuguchi M, Umezawa H, Kawai H, Ando K, Takanashi K, Maekawa S and Saitoh E 2010 Nature 464 262
[31] Nakayama H, Althammer M, Chen Y T, Uchida K, Kajiwara Y, Kikuchi D, Ohtani T, Geprags S, Opel M, Takahashi S, Gross R, Bauer G E W, Goennenwein S T B and Saitoh E 2013 Phys. Rev. Lett. 110 206601
[32] Uchida K, Xiao J, Adachi H, Ohe J, Takahashi S, Ieda J, Ota T, Kajiwara Y, Umezawa H, Kawai H, Bauer G E W, Maekawa S and Saitoh E 2010 Nat. Mater. 9 894
[33] Padron-Hernandez E, Azevedo A and Rezende S M 2011 Phys. Rev. Lett. 107 197203
[34] Wang P, Zhou L F, Jiang S W, Luan Z Z, Shu D J, Ding H F and Wu D 2018 Phys. Rev. Lett. 120 047201
[35] Liu C P, Chen J L, Liu T, Heimbach F, Yu H M, Xiao Y, Hu J F, Liu M C, Chang H C, Stueckler T, Tu S, Zhang Y G, Zhang Y, Gao P, Liao Z M, Yu D P, Xia K, Lei N, Zhao W S and Wu M Z 2018 Nat. Commun. 9 738
[36] Damon R W and van de Vaart H 1965 J. Appl. Phys. 36 3453
[1] Spin waves and transverse domain walls driven by spin waves: Role of damping
Zi-Xiang Zhao(赵梓翔), Peng-Bin He(贺鹏斌), Meng-Qiu Cai(蔡孟秋), Zai-Dong Li(李再东). Chin. Phys. B, 2020, 29(7): 077502.
[2] Improvement of high-frequency properties of Co2FeSi Heusler films by ultrathin Ru underlayer
Cuiling Wang(王翠玲), Shouheng Zhang(张守珩), Shandong Li(李山东), Honglei Du(杜洪磊), Guoxia Zhao(赵国霞), Derang Cao(曹德让). Chin. Phys. B, 2020, 29(4): 046202.
[3] Giant anisotropy of magnetic damping and significant in-plane uniaxial magnetic anisotropy in amorphous Co40Fe40B20 films on GaAs(001)
Ji Wang(王佶), Hong-Qing Tu(涂宏庆), Jian Liang(梁健), Ya Zhai(翟亚), Ruo-Bai Liu(刘若柏), Yuan Yuan(袁源), Lin-Ao Huang(黄林傲), Tian-Yu Liu(刘天宇), Bo Liu(刘波), Hao Meng(孟皓), Biao You(游彪), Wei Zhang(张维), Yong-Bing Xu(徐永兵), Jun Du(杜军). Chin. Phys. B, 2020, 29(10): 107503.
[4] Thickness-dependent magnetic anisotropy in obliquely deposited Fe(001)/Pd thin film bilayers probed by VNA-FMR
Qeemat Gul, Wei He(何为), Yan Li(李岩), Rui Sun(孙瑞), Na Li(李娜), Xu Yang(杨旭), Yang Li(李阳), Zi-Zhao Gong(弓子召), Zong-Kai Xie(谢宗凯), Xiang-Qun Zhang(张向群), Zhao-Hua Cheng(成昭华). Chin. Phys. B, 2019, 28(7): 077502.
[5] Voltage control of ferromagnetic resonance and spin waves
Xinger Zhao(赵星儿), Zhongqiang Hu(胡忠强), Qu Yang(杨曲), Bin Peng(彭斌), Ziyao Zhou(周子尧), Ming Liu(刘明). Chin. Phys. B, 2018, 27(9): 097505.
[6] Large tunable FMR frequency shift by magnetoelectric coupling in oblique-sputtered Fe52.5Co22.5B25.0/PZN-PT multiferroic heterostructure
Zhi-Peng Shi(时志鹏), Xiao-Min Liu(刘晓敏), Shan-Dong Li(李山东). Chin. Phys. B, 2017, 26(9): 097601.
[7] Shape-manipulated spin-wave eigenmodes of magnetic nanoelements
Zhang Guang-Fu, Li Zhi-Xiong, Wang Xi-Guang, Nie Yao-Zhuang, Guo Guang-Hua. Chin. Phys. B, 2015, 24(9): 097503.
[8] Microwave ferromagnetic properties of as-deposited Co2FeSi Heusler alloy films prepared by oblique sputtering
Cao Xiao-Qin, Li Shan-Dong, Cai Zhi-Yi, Du Hong-Lei, Xue Qian, Gao Xiao-Yang, Xie Shi-Ming. Chin. Phys. B, 2014, 23(8): 086201.
[9] Ferromagnetic resonance frequency shift model of laminated magnetoelectric structure tuned by electric field
Zhou Hao-Miao, Chen Qing, Deng Juan-Hu. Chin. Phys. B, 2014, 23(4): 047502.
[10] Angle-dependent spin waves in antidot bilayers
Hu Chun-Lian, Liao Leng, Stamps R. Chin. Phys. B, 2014, 23(12): 127501.
[11] Dynamics of magnetization in ferromagnet with spin-transfer torque
Li Zai-Dong, He Peng-Bin, Liu Wu-Ming. Chin. Phys. B, 2014, 23(11): 117502.
[12] Enhancement of ferromagnetic resonance in Al2O3-doped Co2FeAl Heusler alloy film prepared by oblique sputtering
Li Shan-Dong, Cai Zhi-Yi, Xu Jie, Cao Xiao-Qin, Du Hong-Lei, Xue Qian, Gao Xiao-Yang, Xie Shi-Ming. Chin. Phys. B, 2014, 23(10): 106201.
[13] Demagnetizing factors in patterned CoNiFe films with rectangular elements
Zhang Yu, Zhang Dong, Wang Yu-Kun, Yin Yu-Li, Huang Zhao-Cong, Luo Chen, Zhai Ya. Chin. Phys. B, 2013, 22(5): 056801.
[14] Flexible tuning microwave permeability spectrum in [ferromagnet/antiferromagnet]n exchange-biasedmultilayer stack structure
Jin Li-Chuan, Zhang Huai-Wu, Tang Xiao-Li, Bai Fei-Ming, Zhong Zhi-Yong. Chin. Phys. B, 2013, 22(4): 047502.
[15] The phenomenon of even bulk modes variance in a ferromagnetic A--A bilayer system
Zhou Wen-Ping, Yun Guo-Hong, Liang Xi-Xia. Chin. Phys. B, 2009, 18(12): 5496-5500.
No Suggested Reading articles found!