Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 076201    DOI: 10.1088/1674-1056/ab8da7
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations

Peng Wang(王鹏)1, Ning-Chao Zhang(张宁超)1, Cheng-Lu Jiang(蒋城露)2, Fu-Sheng Liu(刘福生)2, Zheng-Tang Liu(刘正堂)3, Qi-Jun Liu(刘其军)2
1 School of Electronic and Information Engineering, Xi'an Technological University, Xi'an 710021, China;
2 School of Physical Science and Technology, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu 610031, China;
3 State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  The first-principles calculations based on density functional theory are used to obtain structural, mechanical, and electronic properties of Zr-Te compounds. The optimized structural parameters are consistent with the available experimental data. The calculated mechanical properties and formation energy show that the Zr-Te compounds are all mechanically and thermodynamically stable. The bulk modulus B, shear modulus G, Young's modulus E, Debye temperature ΘD, and sound velocity vm are listed, which are positively correlated with the increasing of atomic fraction of Zr. The behaviors of density of states of Zr-Te compounds are obtained. Furthermore, the electronic properties are discussed to clarify the bonding characteristics of compounds. The electronic characteristics demonstrate that the Zr-Te systems with different phases are both covalent and metallic.
Keywords:  Zr-Te compounds      first-principles calculations      mechanical properties  
Received:  12 March 2020      Revised:  23 April 2020      Published:  05 July 2020
PACS:  62.20.-x (Mechanical properties of solids)  
  63.20.dk (First-principles theory)  
  64.70.kd (Metals and alloys)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11574254), the Key Research Project of Science and Technology Department of Shaanxi Province, China (Grant Nos. 2018GY-044 and 2017ZDXM-GY-114), the Innovation Talent Promotion Project of Shaanxi Province, China (Grant No. 2019KJXX-034), the Science and Technology Program of Sichuan Province, China (Grant No. 2018JY0161), and the Fund of the State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, China (Grant No. SKLSP201843).
Corresponding Authors:  Ning-Chao Zhang, Qi-Jun Liu     E-mail:  ningchaozhang@163.com;qijunliu@home.swjtu.edu.cn

Cite this article: 

Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军) Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations 2020 Chin. Phys. B 29 076201

[1] Inoue A 1996 Sci. Rep. RITU A 42 1
[2] Gao X Q, Sun Y T, Wang Z, Li M Z and Bai H Y 2017 Chin. Phys. B 26 016101
[3] Conner R D, Li Y, Nix W D and Johnson W L 2004 Acta Mater. 52 2429
[4] Jiang S Q, Huang Y and Li M Z 2019 Chin. Phys. B 28 046103
[5] Inoue A, Zhang W, Zhang T and Kurosaka K 2001 Acta Mater. 49 2645
[6] Jun W K, Willens R H and Duwez P O L 1960 Nature 187 869
[7] Lin M T, Wan C H and Wu W 2017 Surf. Coat. Technol. 320 217
[8] Abdulsalam M and Joubert D P 2016 Phys. Status Solidi B 253 868
[9] Abdulsalam M and Joubert D P 2015 Eur. Phys. J. B 88 177
[10] Zander D and Köster U 2004 Mater. Sci. Eng. A 375-377 53
[11] Morozova N V, Korobeinikov I V, Kurochka K V, Titov A N and Ovsyannikov S V 2018 J. Phys. Chem. C 122 14362
[12] Gu K, Susilo R A, Ke F, Deng W, Wang Y J, Zhang L K, Xiao H and Chen B 2018 J. Phys.: Condens. Matter 30 385701
[13] Wang C, Wang H F, Chen Y B, Yao S H and Zhou J 2018 J. Appl. Phys. 123 175104
[14] Chen S S, Li X, Lv Y Y, Cao L, Lin D J, Yao S H, Zhou J and Chen Y B 2018 J. Alloys Compd. 764 540
[15] Ullah S, Wang L, Li J X, Li R H and Chen X Q 2019 Chin. Phys. B 28 077105
[16] Guo S D, Wang Y H and Lu W L 2017 New J. Phys. 19 113044
[17] Örlygsson G and Harbrecht B 2001 J. Am. Chem. Soc. 123 4168
[18] Örlygsson G and Harbrecht B 1999 Z. Naturforsch. B 54 1125
[19] Furuseth S and Fjellvag H 1991 Acta Chem. Scand. 45 694
[20] Furuseth S, Brattas L and Kjekshus A 1975 Acta Chem. Scand. A 29 623
[21] Fjellvag H and Kjekshus A 1986 Solid State Commun. 60 91
[22] Öerlygsson G and Harbrecht B 1999 Inorg. Chem. 38 3377
[23] Harbrecht B and Leersch R 1996 J. Alloys Compd. 238 13
[24] de Boer R, Cordfunke E H P, van Vlaanderen P, Ijdo D J W and Plaisier J R 1998 J. Solid State Chem. 139 213
[25] Öerlygsson G and Harbrecht B 2000 Chem.-A Eur. J. 6 4170
[26] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Mater 14 2717
[27] Ceperley D M and Alder B 1980 Phys. Rev. Lett. 45 566
[28] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[29] Campos C E M, Ersching K, de Lima J C, Grandi T A, Höhn H and Pizani P S 2008 J. Alloys Compd. 466 80
[30] Olinger B and Jamieson J C 1973 High Temperatures-High Press. 5 123
[31] Born M and Huang K 1954 Dynamical Theory of Crystal Lattices (Oxford: Oxford University Press)
[32] Mouhat F and Coudert F 2014 Phys. Rev. B 90 224104
[33] Hill R 1952 Proc. Phys. Soc. Lond. 65 349
[34] Li P, Ma L S, Peng M J, Shu B P and Duan Y H 2018 J. Alloys Compd. 747 905
[35] Bao W Z, Liu D and Duan Y H 2018 Ceram. Int. 44 14053
[36] Wu Z J, Zhao E J, Xiang H P, Hao X F, Liu X J and Meng J 2007 Phys. Rev. B 76 054115
[37] Tian Y, Xu B and Zhao Z 2012 Int. J. Refract. Met. Hard Mater 33 93
[38] Kanchana V, Vaitheeswaran G, Svane A and Delin A 2006 J. Phys: Condens. Matter 18 9615
[39] Pugh S F 1954 Philos. Mag. 45 823
[40] Rodgers J L, and Nicewander W A 1988 Am. Statistician 42 59
[41] Rice W R 1989 Evolution 43 223
[1] Structural, mechanical, electronic properties, and Debye temperature of quaternary carbide Ti3NiAl2C ceramics under high pressure: A first-principles study
Diyou Jiang(姜迪友), Wenbo Xiao(肖文波), and Sanqiu Liu(刘三秋). Chin. Phys. B, 2021, 30(3): 036202.
[2] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[3] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[4] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[5] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[6] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[7] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[8] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[9] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[10] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[11] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[12] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
[13] Designing solar-cell absorber materials through computational high-throughput screening
Xiaowei Jiang(江小蔚), Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(2): 028803.
[14] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[15] Structural, mechanical, and electronic properties of 25 kinds of Ⅲ-V binary monolayers:A computational study with first-principles calculation
Xue-Fei Liu(刘雪飞), Zi-Jiang Luo(罗子江), Xun Zhou(周勋), Jie-Min Wei(魏节敏), Yi Wang(王一), Xiang Guo(郭祥), Bing Lv(吕兵), Zhao Ding(丁召). Chin. Phys. B, 2019, 28(8): 086105.
No Suggested Reading articles found!