Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 077101    DOI: 10.1088/1674-1056/ab8d9e
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation

Lu Li(栗潞)1, Xiu-Hua Cui(崔秀花)1, Hai-Bin Cao(曹海宾)2, Yi Jiang(姜轶)1, Hai-Ming Duan(段海明)1, Qun Jing(井群)1, Jing Liu(刘静)1, Qian Wang(王倩)1
1 School of Physical Science and Technology, Xinjiang University, Urumqi 830046, China;
2 Department of Physics, College of Sciences, Shihezi University, Shihezi 832000, China
Abstract  The stable geometries, electronic structures, and magnetic behaviors of the ScLin (n=2-13) clusters are investigated by using particle swarm optimization (PSO) and density functional theory (DFT). The results show that these clusters have three-dimensional (3D) structures except ScLi2, and ScLi12, and ScLi13 that possess the cage-like structures. In analyses of the average binding energy, second-order difference of energy, and fragmentation energy, ScLi12 cluster is identified as magnetic superatom. The magnetic moment for each of these clusters owns an oscillating curve of different cluster sizes, and their magnetic moments are further investigated using molecular orbitals and jellium model. Of ScLin (n=2-13) clusters, ScLi12 has the largest spin magnetic moment (3 μB), and molecular orbitals of ScLi12 can be described as 1S21P61Dα5Dβ2. Additionally, Mulliken population and AdNDP bonding analysis are discussed and the results reveal that the Sc atom and Lin atoms make equal contribution to the total magnetic moment, and atomic charges transfer between Sc atoms and Li atoms.
Keywords:  density functional theory      most stable geometry      magnetic moment  
Received:  12 January 2020      Revised:  14 April 2020      Published:  05 July 2020
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  13.40.Em (Electric and magnetic moments)  
  36.40.Cg (Electronic and magnetic properties of clusters)  
  36.40.Qv (Stability and fragmentation of clusters)  
Fund: Project supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region, China (Grant Nos. 2018D01C079 and 2018D01C072).
Corresponding Authors:  Xiu-Hua Cui, Qian Wang     E-mail:  xjcxh0991@xju.edu.cn;wq@xju.edu.cn

Cite this article: 

Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩) Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation 2020 Chin. Phys. B 29 077101

[1] Tian F Y, Jing Q and Wang Y X 2008 Phys. Rev. A 77 013202
[2] Jin Y Y, Maroulis G, Kuang X Y, Ding L P, Lu C, Wang J J, Lv J, Zhang C Z and Ju M 2015 Phys. Chem. Chem. Phys. 17 13590
[3] Lu S J, Xu X L, Feng G, Xu H G, Zheng and W J 2016 J. Phys. Chem. C 120 25628
[4] Jin Y, Lu S, Hermann A, Kuang X, Zhang C, Lu C, Xu H and Zheng W 2016 Sci. Rep. 6 30116
[5] Shao P, Chen B L, Ding L P, Luo D B, Lu C and Kuang X Y 2017 Phys. Chem. Chem. Phys. 19 25289
[6] Lu S J 2019 Phys. Chem. Chem. Phys. 21 26154
[7] Xiong R, Die D, Xiao L, Xu Y G and Shen X Y 2017 Nanoscale Res. Lett. 12 625
[8] Zhao Y R, Bai T T, Jia L N, Xin W, Hu Y F, Zheng X S and Hou S T 2019 J. Phys. Chem. C 123 28561
[9] Kang D, Sun W, Shi H, Lu C, Kuang X, Chen B, Xia X and Maroulis G 2019 Sci. Rep. 9 14367
[10] Jing Q, Ge G X, Cao H B, Huang X C, Liu X Y and Yan H X 2010 Acta Phys. Chim. Sin. 26 2510
[11] Jing Q, Tian F Y and Wang Y X 2008 J. Chem. Phys. 128 124319
[12] Gong X G and Zheng Q Q 1995 Phys. Rev. B 52 4756
[13] Akola J, Walter M, Whetten R L, Hakkinen H and Gronbeck H 2008 J. Am. Chem. Soc. 130 3756
[14] Das A, Li T, Nobusada K, Zeng Q, Rosi N L and Jin R 2012 J. Am. Chem. Soc. 134 20286
[15] Pederson M R, Reuse F and Khanna S N 1998 Phys. Rev. B 58 5632
[16] Wang J, Bai J, Jellinek J and Zeng X C 2007 J. Am. Chem. Soc. 129 4110
[17] Ge G X, Yan H X, Jing Q, Huang X M, Wan J G and Wang G H 2013 Eur. Phys. J. D 67 116
[18] Reveles J U, Clayborne P A, Reber A C, Khanna S N, Pradhan K, Sen P and Pederson M R 2009 Nat. Chem. 1 310
[19] Pradhan K, Reveles J U, Sen P and Khanna S N 2010 J. Chem. Phys. 132 124302
[20] Medel Juarez V, Reveles J, Khanna S, Chauhan V, Sen P and Castleman A 2011 Proc. Nat. Acad. Sci. USA 108 10062
[21] Reveles J, Sen P, Pradhan K, Roy D and Khanna S 2010 J. Phys. Chem. C 114 10739
[22] Zhang M, Zhang J, Feng X, Zhang H, Zhao L, Luo Y and Cao W 2013 J. Phys. Chem. A 117 13025
[23] Castleman A W and Khanna S N 2009 J. Phys. Chem. C 113 2664
[24] Walter M, Akola J, Acevedo O L, Jadzinsky P, Calero G, Ackerson C, Whetten R, Grönbeck H and Häkkinen H 2008 Proc. Nat. Acad. Sci. USA 105 9157
[25] Pradhan K, Sen P, Reveles J and Khanna S 2008 Phys. Rev. B 77 045408
[26] Pradhan K, Reveles J U, Sen P and Khanna S N 2010 J. Chem. Phys. 132 124302
[27] Wang Y, Lv J, Li Q, Wang H and Ma Y 2019 CALYPSO Method for Structure Prediction and Its Applications to Materials Discovery, in Handbook of Materials Modeling, eds. Andreoni W and Yip S (Cham: Springer)
[28] Lv J, Wang Y, Zhu L and Ma Y 2012 J. Chem. Phys. 137 084104
[29] Wang Y, Lv J, Zhu L and Ma Y 2012 Comput. Phys. Commun. 183 2063
[30] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[31] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[32] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[33] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[34] Wang Y, Miao M, Lv J, Zhu L, Yin K, Liu H and Ma Y 2012 J. Chem. Phys. 137 224108
[35] Lv J, Wang Y, Zhu L and Ma Y 2012 J. Chem. Phys. 137 084104
[36] Wang Y, Lv J, Zhu L and Ma Y 2010 Phys. Rev. B 82 094116
[37] Wang Y, Lv J, Li Q, Wang H and Ma Y 2018 Handbook of Materials Modeling: Applications: Current and Emerging Materials, eds. Andreoni W and Yip S (Cham: Springer International Publishing) 1 28
[38] Luo X, Yang J, Liu H, Wu X, Wang Y, Ma Y, Wei S H, Gong X and Xiang H 2011 J. Am. Chem. Soc. 133 16285
[39] Zhang X, Wang Y, Lv J, Zhu C, Li Q, Zhang M, Li Q and Ma Y 2013 J. Chem. Phys. 138 114101
[40] Lu S, Wang Y, Liu H, Miao M S and Ma Y 2014 Nat. Commun. 5 3666
[41] Dong X, Jalife S, Vasquez-Espinal A, Ravell E, Pan S, Cabellos J L, Liang W Y, Cui Z H and Merino G 2018 Angew. Chem. Int. Ed. Engl. 57 4627
[42] Le Chen B, Sun W G, Kuang X Y, Lu C, Xia X X, Shi H X and Maroulis G 2018 Inorg. Chem. 57 343
[43] Frisch M J, Trucks G W, Schlegel H B, et al. 2013 Gaussian 09, Revision E.01, Gaussian, Inc., Wallingford CT
[44] Zubarev D Y and Boldyrev A I 2008 Boldyrev. Phys. Chem. Chem. Phys. 10 5207
[45] Tian Lu and Feiwu Chen 2012 J. Comput. Chem. 33 580
[46] Tian L and Chen F W 2011 Acta Chim. Sin. 69 2393 (Chinese)
[47] Humphrey W, Dalke A and Schulten K 1996 J. Mol. Graph. 14 33
[1] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[2] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[3] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[4] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[5] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[6] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[7] Exploring ferromagnetic half-metallic nature of Cs2NpBr6 via spin polarized density functional theory
Malak Azmat Ali, G Murtaza, A Laref. Chin. Phys. B, 2020, 29(6): 066102.
[8] Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates
Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英). Chin. Phys. B, 2020, 29(5): 058202.
[9] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[10] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[11] Computational screening of doping schemes forLiTi2(PO4)3 as cathode coating materials
Yu-Qi Wang(王宇琦), Xiao-Rui Sun(孙晓瑞), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉). Chin. Phys. B, 2020, 29(3): 038202.
[12] Theoretical investigations of collision dynamics of cytosine by low-energy (150-1000 eV) proton impact
Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), Xue-Fen Xu(许雪芬), Chao-Yi Qian(钱超义). Chin. Phys. B, 2020, 29(2): 023401.
[13] Different noncollinear magnetizations on two edges of zigzag graphene nanoribbons
Yang Xiao(肖杨), Qiaoli Ye(叶巧利), Jintao Liang(梁锦涛), Xiaohong Yan(颜晓红), and Ying Zhang(张影). Chin. Phys. B, 2020, 29(12): 127201.
[14] Pressure-dependent physical properties of cubic Sr BO3 ( B=Cr, Fe) perovskites investigated by density functional theory
Md Zahid Hasan, Md Rasheduzzaman, and Khandaker Monower Hossain. Chin. Phys. B, 2020, 29(12): 123101.
[15] Lattice thermal conductivity of β12 and χ3 borophene
Jia He(何佳), Yulou Ouyang(欧阳宇楼), Cuiqian Yu(俞崔前), Pengfei Jiang(蒋鹏飞), Weijun Ren(任卫君), and Jie Chen(陈杰). Chin. Phys. B, 2020, 29(12): 126503.
No Suggested Reading articles found!