Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 074202    DOI: 10.1088/1674-1056/ab8c3e
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Reversion of weak-measured quantum entanglement state

Shao-Jiang Du(杜少将)1, Yonggang Peng(彭勇刚)2, Hai-Ran Feng(冯海冉)1, Feng Han(韩峰)1, Lian-Wu Yang(杨连武)1, Yu-Jun Zheng(郑雨军)2
1 Department of Physics and Information Engineering, Jining University, Qufu 273155, China;
2 School of Physics, Shandong University, Jinan 250100, China
Abstract  We theoretically study the reversible process of quantum entanglement state by means of weak measurement and corresponding reversible operation. We present a protocol of the reversion operation in two bodies based on the theory of reversion of single photon and then expend it in quantum communication channels. The theoretical results demonstrate that the protocol does not break the information transmission after a weak measurement and a reversible measurement with the subsequent process in the transmission path. It can reverse the perturbed entanglement intensity evolution to its original state. Under the condition of different weak measurement intensity the protocol can reverse the perturbed quantum entanglement system perfectly. In the process we can get the classical information described by information gain from the quantum system through weak measurement operation. On the other hand, in order to realize complete reversibility, the classical information of the quantum entanglement system must obey a limited range we present in this paper in the reverse process.
Keywords:  quantum entanglement      weak measurement      reversion operation      information gain and reversibility  
Received:  31 January 2020      Revised:  13 April 2020      Published:  05 July 2020
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  03.67.-a (Quantum information)  
  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11504135) and University Science and Technology Plan Project of Shandong Province, China (Grant Nos. J16LJ53).
Corresponding Authors:  Shao-Jiang Du, Yu-Jun Zheng     E-mail:  yzheng@sdu.edu.cn;dsjsd@126.com

Cite this article: 

Shao-Jiang Du(杜少将), Yonggang Peng(彭勇刚), Hai-Ran Feng(冯海冉), Feng Han(韩峰), Lian-Wu Yang(杨连武), Yu-Jun Zheng(郑雨军) Reversion of weak-measured quantum entanglement state 2020 Chin. Phys. B 29 074202

[1] Wootters W K and Zurek W H 2009 Phys. Today 62 76
[2] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[3] Mattle K, Pan J W, Eibl M, Weinfurter H and Zeilinger A 1997 Nature 390 575
[4] Furusawa A 1998 Science 282 706
[5] Sun S N and Zheng Y J 2019 Phys. Rev. Lett. 123 180403
[6] Zhao N, Z H U C H and Quan D X 2015 Chin. Phys. Lett. 32 80306
[7] Hou L L, Xue J Z, Sui Y X and Wang S 2019 Chin. Phys. B 28 094217
[8] Xiang Z L, Zhang M Z, Liang Jiang L and Rabl P 2017 Phys. Rev. X 7 011035
[9] Du S J, Xia Y J, Duan D Y, Zhang L and Gao Q 2015 Chin. Phys. B 24 044205
[10] Vaziri A, Weihs B and Zeilinger A 2002 Phys. Rev. Lett. 89 240401
[11] Ursin R, Tiefenbacher F, Schmitt-Manderbach T, Weier H, Scheidl T, Lindenthal M, Blauensteiner B et al. 2007 Nat. Phys. 3 481
[12] Ren J G, Xu P, Yong H L, Zhang L, Liao S K, Yin J et al. 2017 Nature 549 70
[13] Vaidman L, Aharonov Y and Albert D Z 1987 Phys. Rev. Lett. 58 1403
[14] Duck I M, Stevenson P M and Sudarshan E C G 1989 Phys. Rev. D 40 2112
[15] Sun Q Q, Al-Amri M and Zubairy M S 2009 Phys. Rev. A 80 033838
[16] Man Z X, Xia Y J and An N B 2012 Phys. Rev. A 64 012325
[17] Yang G, Lian B W and Nie M 2016 Chin. Phys. B 25 080310
[18] Cui T, Huang J Z, Liu X and Zeng G H 2016 Chin. Phys. B 25 020301
[19] Wang S C, Yu Z W and Wang X B 2014 Phys. Rev. A 89 022318
[20] Kim Y S, Cho Y W, Ra Y S and Kim Y H 2009 Opt. Express 29 11978
[21] Cheong Y W and Lee S W 2012 Phys. Rev. Lett. 109 150402
[22] Yu T and Eberly J H 2004 Phys. Rev. Lett. 93 140403
[23] Pellizzari T, Gardiner S A, Cirac J I and Zoller P 1995 Phys. Rev. Lett. 75 3788
[24] Liao X P, Fang M F, Fang J S and Zhu Q Q 2014 Chin. Phys. B 23 020304
[25] Zheng S B and Guo G C 2000 Phys. Rev. Lett. 85 2392
[26] Laurat J, Choi K S, Deng H, Chou C W and Kimble H J 2007 Phys. Rev. Lett. 99 180504
[27] Duan L M, Giedke G, Cirac J I and Zoller P 2000 Phys. Rev. Lett. 84 4002
[28] Liu C R, Yu P, Chen X Z, Xu H Y, Huang L and Lai Y C 2019 Chin. Phys. B 28 100501
[29] Simon C and Pan J W 2002 Phys. Rev. Lett. 89 257901
[30] Zhang H, Liu Q, Xu X S, Xiong J, Alsaedi A, Hayat T and Deng F G 2017 Phys. Rev. A 96 052330
[31] Sainz I and Bjork G 2007 Phys. Rev. A 76 042313
[32] Afshar D, Anbaraki A and Jafarpour M 2017 Opt. Commun. 402 80
[33] Krumm F and Vogel W 2018 Phys. Rev. A 97 043806
[34] Hofmann H F 1953 Phys. Rev. A 89 123
[35] Koashi M and Ueda M 1999 Phys. Rev. Lett. 82 2598
[36] Banaszek K and Devetak I 1999 Phys. Rev. A 64 466
[37] Vidal G and Werner R F 2002 Phys. Rev. A 65 032314
[38] Verstraete F, Audenaert K, Dehaene J and Moor B D 2001 J. Phys. A: Math. Gen. 34 10327
[39] Kim J S 2018 Phys. Rev. A 97 012334
[1] Scheme to measure the expectation value of a physical quantity in weak coupling regime
Jie Zhang(张杰), Chun-Wang Wu(吴春旺), Yi Xie(谢艺), Wei Wu(吴伟), and Ping-Xing Chen(陈平形). Chin. Phys. B, 2021, 30(3): 033201.
[2] Quantifying entanglement in terms of an operational way
Deng-Hui Yu(于登辉) and Chang-Shui Yu(于长水). Chin. Phys. B, 2021, 30(2): 020302.
[3] Entropy squeezing for a V-type three-level atom interacting with a single-mode field and passing through the amplitude damping channel with weak measurement
Cui-Yu Zhang(张翠玉) and Mao-Fa Fang(方卯发). Chin. Phys. B, 2021, 30(1): 010303.
[4] Extended validity of weak measurement
Jiangdong Qiu(邱疆冬), Changliang Ren(任昌亮), Zhaoxue Li(李兆雪), Linguo Xie(谢林果), Yu He(何宇), Zhiyou Zhang(张志友), Jinglei Du(杜惊雷). Chin. Phys. B, 2020, 29(6): 064214.
[5] Qubit movement-assisted entanglement swapping
Sare Golkar, Mohammad Kazem Tavassoly, Alireza Nourmandipour. Chin. Phys. B, 2020, 29(5): 050304.
[6] Quantum speed limit time and entanglement in a non-Markovian evolution of spin qubits of coupled quantum dots
M. Bagheri Harouni. Chin. Phys. B, 2020, 29(12): 124203.
[7] Protecting the entanglement of two-qubit over quantum channels with memory via weak measurement and quantum measurement reversal
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰), Yang Yang(杨阳), Liao-Zhen Cao(曹连振), Qin-Wei Zhang(张钦伟), Ying-De Li(李英德), and Jia-Qiang Zhao(赵加强). Chin. Phys. B, 2020, 29(11): 110307.
[8] Effect of weak measurement on quantum correlations
L Jebli, M Amzioug, S E Ennadifi, N Habiballah, and M Nassik$. Chin. Phys. B, 2020, 29(11): 110301.
[9] Hidden Anderson localization in disorder-free Ising–Kondo lattice
Wei-Wei Yang(杨薇薇), Lan Zhang(张欄), Xue-Ming Guo(郭雪明), and Yin Zhong(钟寅)†. Chin. Phys. B, 2020, 29(10): 107301.
[10] Geometrical quantum discord and negativity of two separable and mixed qubits
Tang-Kun Liu(刘堂昆), Fei Liu(刘飞), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2019, 28(9): 090304.
[11] Atom interferometers with weak-measurement path detectors and their quantum mechanical analysis
Zhi-Yuan Li(李志远). Chin. Phys. B, 2019, 28(6): 060301.
[12] Entropy of field interacting with two two-qubit atoms
Tang-Kun Liu(刘堂昆), Yu Tao(陶宇), Chuan-Jia Shan(单传家), Ji-Bing Liu(刘继兵). Chin. Phys. B, 2018, 27(9): 090303.
[13] Entangling two oscillating mirrors in an optomechanical system via a flying atom
Yu-Bao Zhang(张玉宝), Jun-Hao Liu(刘军浩), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(7): 074209.
[14] The entanglement of deterministic aperiodic quantum walks
Ting-Ting Liu(刘婷婷), Ya-Yun Hu(胡亚运), Jing Zhao(赵静), Ming Zhong(钟鸣), Pei-Qing Tong(童培庆). Chin. Phys. B, 2018, 27(12): 120305.
[15] Extended Bell inequality and maximum violation
Yan Gu(古燕), Haifeng Zhang(张海峰), Zhigang Song(宋志刚), Jiuqing Liang(梁九卿), Lianfu Wei(韦联福). Chin. Phys. B, 2018, 27(10): 100303.
No Suggested Reading articles found!