Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 076101    DOI: 10.1088/1674-1056/ab8abe

Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2

Wen-Xuan Wang(王文轩)1, Zhen-Yi Jiang(姜振益)1, Yan-Ming Lin(林彦明)1, Ji-Ming Zheng(郑继明)1, Zhi-Yong Zhang(张志勇)1,2
1 Shaanxi Key Laboratory for Theoretical Physics Frontiers, Institute of Modern Physics, Northwest University, Xi'an 710069, China;
2 Stanford Research Computing Center, Stanford University, Stanford, California 94305, USA
Abstract  The martensitic-type phase transformation paths from the rutile to the α-PbO2 phase of TiO2 are studied with linear interpolation and NEB/G-SSNEB methods based on first-principles calculations. Its potential energy surface and the lowest energy path are revealed. Our results indicate that the titanium atoms of the rutile phase shuffle along the [0-11]rut crystal direction to form the α-PbO2 phase. During the phase transition, the oxygen atoms are dragged by the heavier titanium atoms and then reach their new equilibrium positions. The barrier of phase transition from nudged elastic band theory is about 231 meV, which is qualitatively consistent with previous theoretical calculations from the monoclinic phase to the tetragonal phase for ZrO2 and HfO2. Debye model can also be successfully used to predict the pressure and temperature of the phase transformation.
Keywords:  phase transition      transition barrier      Debye's theory      NEB method  
Received:  11 February 2020      Revised:  14 March 2020      Published:  05 July 2020
PACS:  61.43.Bn (Structural modeling: serial-addition models, computer simulation)  
  61.50.Ks (Crystallographic aspects of phase transformations; pressure effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51872227, 51572219, and 11447030).
Corresponding Authors:  Zhen-Yi Jiang     E-mail:

Cite this article: 

Wen-Xuan Wang(王文轩), Zhen-Yi Jiang(姜振益), Yan-Ming Lin(林彦明), Ji-Ming Zheng(郑继明), Zhi-Yong Zhang(张志勇) Theoretical study on martensitic-type transformation path from rutile phase to α-PbO2 phase of TiO2 2020 Chin. Phys. B 29 076101

[1] Li Y L, Zhong G H and Zeng Z 2009 Chin. Phys. B 18 4437
[2] Zhao W J, Xu H B and Wang Y X 2010 Chin. Phys. B 19 016201
[3] Xu N, Li J F, Huang B L and Wang B L 2016 Chin. Phys. B 25 016103
[4] Zhang M G, Yan H Y, Zhang G T and Wang H 2012 Chin. Phys. B 21 076103
[5] McMillan P F 2002 Nat. Mater. 1 19
[6] Arpita Aparajita A N, Sanjay Kumar N R, Chandra S, Amirthapandian S, Chandra Shekar N V and Sridhar K 2018 Inorg. Chem. 57 14178
[7] Dubrovinsky L S, Dubrovinskaia N A, Swamy V, Muscat J, Harrison N M, Ahuja R, Holm B and Johansson B 2001 Nature 410 653
[8] Giarola M, Sanson A, Monti F and Mariotto G 2010 Phys. Rev. B 81 174305
[9] Spektor K, Tran D T, Leinenweber K and Häussermann U 2013 J. Solid State Chem. 206 209
[10] Mcqueen R G, Jamieson J C and Marsh S P 1967 Science 155 1401
[11] Sato H, Endo S, Sugiyama M, Kikegawa T, Shimomura O and Kusaba K 1991 Science 251 786
[12] Dubrovinskaia N A, Dubrovinsky L S, Ahuja R, Prokopenko V B, Dmitriev V, Weber H P, Osorio-Guillen J M and Johansson B 2001 Phys. Rev. Lett. 87 275501
[13] Hwang S L, Shen P, Chu H T and Yui T F 2000 Science 288 321
[14] Blochl P E 1994 Phys. Rev. B 50 17953
[15] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[16] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[17] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[18] Fang Z J and Shi L J 2008 Phys. Lett. A 372 3759
[19] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[20] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978
[21] Sheppard D, Xiao P, Chemelewski W, Johnson D D and Henkelman G 2012 J. Chem. Phys. 136 074103
[22] Otsuka K and Ren X 2005 Prog. Mater. Sci. 50 511
[23] Flank A M, Lagarde P, Itié J, Polian P A and Hearne G R 2008 Phys. Rev. B 77 224112
[24] Cai Y Q, Zhang C and Yuan P F 2011 Phys. Rev. B 84 094107
[25] Nicol M and Fong M Y 1971 J. Chem. Phys. 54 3167
[26] Luo X H, Zhou W, Ushakov S V, Navrotsky A and Demkov A A 2009 Phys. Rev. B 80 134119
[27] Jamieson J C and Olinger B 1968 Science 161 893
[28] Yu J X, Fu M, Ji G F and Chen X R 2009 Chin. Phys. B 18 269
[29] Tang J and Endo S 1993 J. Am. Ceram. Soc. 76 796
[1] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[2] Cluster mean-field study of spinor Bose-Hubbard ladder: Ground-state phase diagram and many-body population dynamics
Li Zhang(张莉), Wenjie Liu(柳文洁), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(2): 026701.
[3] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[4] Temperature-induced phase transition of two-dimensional semiconductor GaTe
Xiaoyu Wang(王啸宇), Xue Wang(王雪), Hongshuai Zou(邹洪帅), Yuhao Fu(付钰豪), Xin He(贺欣), and Lijun Zhang(张立军). Chin. Phys. B, 2021, 30(1): 016402.
[5] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[6] Fast and accurate determination of phase transition temperature via individual generalized canonical ensemble simulation
Ming-Zhe Shao(邵明哲), Yan-Ting Wang(王延颋), Xin Zhou(周昕). Chin. Phys. B, 2020, 29(8): 080505.
[7] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[8] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[9] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[10] Electronic structure and phase transition engineering in NbS2: Crucial role of van der Waals interactions
Wei Wang(王威), Wen Lei(雷文), Xiaojun Zheng(郑晓军), Huan Li(黎欢), Xin Tang(唐鑫), Xing Ming(明星). Chin. Phys. B, 2020, 29(5): 056201.
[11] Tunable deconfined quantum criticality and interplay of different valence-bond solid phases
Bowen Zhao(赵博文), Jun Takahashi, Anders W. Sandvik. Chin. Phys. B, 2020, 29(5): 057506.
[12] Growth and structural characteristics of metastable β-In2Se3 thin films on H-terminated Si(111) substrates by molecular beam epitaxy
Yi-Fan Shen(沈逸凡), Xi-Bo Yin(尹锡波), Chao-Fan Xu(徐超凡), Jing He(贺靖), Jun-Ye Li(李俊烨), Han-Dong Li(李含冬), Xiao-Hong Zhu(朱小红), Xiao-Bin Niu(牛晓滨). Chin. Phys. B, 2020, 29(5): 056402.
[13] Ab initio studies on ammonium iodine under high pressure
Mengya Lu(鲁梦雅), Yanping Huang(黄艳萍), Fubo Tian(田夫波), Da Li(李达), Defang Duan(段德芳), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(5): 053104.
[14] Dissipative quantum phase transition in a biased Tavis-Cummings model
Zhen Chen(陈臻), Yueyin Qiu(邱岳寅), Guo-Qiang Zhang(张国强), Jian-Qiang You(游建强). Chin. Phys. B, 2020, 29(4): 044201.
[15] Acoustic topological phase transition induced by band inversion of high-order compound modes and robust pseudospin-dependent transport
Yan Li(李妍)†, Yi-Nuo Liu(刘一诺), and Xia Zhang(张霞). Chin. Phys. B, 2020, 29(10): 106301.
No Suggested Reading articles found!