CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain |
Xing-Yi Tan(谭兴毅)1, Li-Li Liu(刘利利)1, Da-Hua Ren(任达华)2 |
1 Department of Physics, Chongqing Three Gorges University, Wanzhou 404100, China; 2 School of Information Engineering, Hubei Minzu University, Enshi 445000, China |
|
|
Abstract Van der Waals (vdW) heterostructures have attracted significant attention because of their widespread applications in nanoscale devices. In the present work, we investigate the electronic structures of germanane/antimonene vdW heterostructure in response to normal strain and an external electric field by using the first-principles calculations based on density functional theory (DFT). The results demonstrate that the germanane/antimonene vdW heterostructure behaves as a metal in a [-1, -0.6] V/Å range, while it is a direct semiconductor in a [-0.5, 0.2] V/Å range, and it is an indirect semiconductor in a [0.3, 1.0] V/Å range. Interestingly, the band alignment of germanane/antimonene vdW heterostructure appears as type-Ⅱ feature both in a [-0.5, 0.1] range and in a [0.3, 1] V/Å range, while it shows the type-I character at 0.2 V/Å. In addition, we find that the germanane/antimonene vdW heterostructure is an indirect semiconductor both in an in-plane biaxial strain range of [-5%, -3%] and in an in-plane biaxial strain range of [3%, 5%], while it exhibits a direct semiconductor character in an in-plane biaxial strain range of [-2%, 2%]. Furthermore, the band alignment of the germanane/antimonene vdW heterostructure changes from type-Ⅱ to type-I at an in-plane biaxial strain of -3%. The adjustable electronic structure of this germanane/antimonene vdW heterostructure will pave the way for developing the nanoscale devices.
|
Received: 03 March 2020
Revised: 13 April 2020
Published: 05 July 2020
|
PACS:
|
61.72.uj
|
(III-V and II-VI semiconductors)
|
|
71.15.Mb
|
(Density functional theory, local density approximation, gradient and other corrections)
|
|
74.78.Fk
|
(Multilayers, superlattices, heterostructures)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864011). |
Corresponding Authors:
Xing-Yi Tan
E-mail: tanxy@sanxiau.edu.cn
|
Cite this article:
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华) Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain 2020 Chin. Phys. B 29 076102
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
|
[2] |
Gibaja C, Rodriguez-San-Miguel D, Ares P, Gómez-Herrero J, Varela M, Gillen R, Maultzsch J, Hauke F, Hirsch A and Abellán G 2016 Angew. Chem. Int. Edit. 55 14345
|
[3] |
Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W and Ni Z 2016 Nat. Commun. 7 13352
|
[4] |
Singh D, Gupta S K, Sonvane Y and Lukačević I 2016 J. Mater. Chem. C 4 6386
|
[5] |
Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Angew. Chem. Int. Edit. 54 3112
|
[6] |
Bianco E, Butler S, Jiang S, Restrepo O D, Windl W and Goldberger J E 2013 ACS Nano 7 4414
|
[7] |
Wei W, Dai Y, Huang B and Jacob T 2013 Phys. Chem. Chem. Phys. 15 8789
|
[8] |
Madhushankar B, Kaverzin A, Giousis T, Potsi G, Gournis D, Rudolf P, Blake G, Van Der Wal C and Van Wees B 2017 2D Mater. 4 021009
|
[9] |
Zhou L, Kou L, Sun Y, Felser C, Hu F, Shan G, Smith S C, Yan B and Frauenheim T 2015 Nano Lett. 15 7867
|
[10] |
Huang C, Du Y, Wu H, Xiang H, Deng K and Kan E 2018 Phys. Rev. Lett. 120 147601
|
[11] |
Huang C, Zhou J, Wu H, Deng K, Jena P and Kan E 2017 Phys. Rev. B 95 045113
|
[12] |
Guo Y, Dai J, Zhao J, Wu C, Li D, Zhang L, Ning W, Tian M, Zeng X C and Xie Y 2014 Phys. Rev. Lett. 113 157202
|
[13] |
Li S L, Tsukagoshi K, Orgiu E and Samorí P 2016 Chem. Soc. Rev. 45 118
|
[14] |
Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
|
[15] |
Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 ACS Nano 8 1102
|
[16] |
Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
|
[17] |
Liu L, Feng Y and Shen Z 2003 Phys. Rev. B 68 104102
|
[18] |
Preobrajenski A, Nesterov M, Ng M L, Vinogradov A and Mårtensson N 2007 Chem. Phys. Lett. 446 119
|
[19] |
Schedin F, Geim A K, Morozov S V, Hill E, Blake P, Katsnelson M and Novoselov K S 2007 Nat. Mater. 6 652
|
[20] |
Geim A K and Grigorieva I V 2013 Nature 499 419
|
[21] |
Novoselov K, Mishchenko A, Carvalho A and Neto A C 2016 Science 353 aac9439
|
[22] |
Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y and Duan X 2016 Nat. Rev. Mater. 1 16042
|
[23] |
Jariwala D, Marks T J and Hersam M C 2017 Nat. Mater. 16 170
|
[24] |
Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, Aldave D A, Díaz-Tendero S, Alcamí M, Martín F, Gómez-Herrero J and Zamora F 2016 Adv. Mater. 28 6332
|
[25] |
Lei T, Liu C, Zhao J L, Li J M, Li Y P, Wang J O, Wu R, Qian H J, Wang H Q and Ibrahim K 2016 J. Appl. Phys. 119 015302
|
[26] |
Fortin-Deschênes M, Waller O, Mentes T, Locatelli A, Mukherjee S, Genuzio F, Levesque P, Hébert A, Martel R and Moutanabbir O 2017 Nano Lett. 17 4970
|
[27] |
Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L and Zhu S Y 2017 Adv. Mater. 29 1605407
|
[28] |
Wang G, Pandey R and Karna S P 2015 ACS Appl. Mater. Inte. 7 11490
|
[29] |
Zhao M, Zhang X and Li L 2015 Sci. Rep. 5 16108
|
[30] |
Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, Aldave D A, Díaz-Tendero S, Alcamí M, Martín F, Gómez-Herrero J and Zamora F 2016 Adv. Mater. 28 6515
|
[31] |
Pizzi G, Gibertini M, Dib E, Marzari N, Iannaccone G and Fiori G 2016 Nat. Commun. 7 12585
|
[32] |
Zhang Z, Zhang Y, Xie Z, Wei X, Guo T, Fan J, Ni L, Tian Y, Liu J and Duan L 2019 Phys. Chem. Chem. Phys. 21 5627
|
[33] |
Wang N, Cao D, Wang J, Liang P, Chen X and Shu H 2017 J. Mater. Chem. C 5 9687
|
[34] |
Wang X, Quhe R, Cui W, Zhi Y, Huang Y, An Y, Dai X, Tang Y, Chen W and Wu Z 2018 Carbon 129 738
|
[35] |
Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S and Gao H J 2014 Adv. Mater. 26 4820
|
[36] |
Ghosh R K, Brahma M and Mahapatra S 2014 IEEE T. Electron. Dev. 61 2309
|
[37] |
Li Y and Chen Z 2014 J. Phys. Chem. C 118 1148
|
[38] |
Zhang R W, Zhang C W, Ji W X, Li F, Ren M J, Li P, Yuan M and Wang P J 2015 Phys. Chem. Chem. Phys. 17 12194
|
[39] |
Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
|
[40] |
Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
|
[41] |
Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
|
[42] |
ToolKit A 2014 S http://www.quantumwise.com
|
[43] |
Lee K, Murray E D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101
|
[44] |
Garcia J C, De Lima D B, Assali L V and Justo J F 2011 J. Phys. Chem. C 115 13242
|
[45] |
Lu H, Gao J, Hu Z and Shao X 2016 RSC Adv. 6 102724
|
[46] |
Chen X, Yang Q, Meng R, Jiang J, Liang Q, Tan C and Sun X 2016 J. Mater. Chem. C 4 5434
|
[47] |
Wang S and Yu J 2018 Thin Solid Films 654 107
|
[48] |
Wang S and Yu J 2018 Appl. Phys. A 124 487
|
[49] |
Guo X, Li D and Xi L 2018 Chin. Phys. B 27 097506
|
[50] |
Zhang P, Wang J and Duan X M 2016 Chin. Phys. B 25 037302
|
[51] |
Wang S K and Jun W 2015 Chin. Phys. B 24 037202
|
[52] |
Zhang L, He D W and He J Q 2019 Chin. Phys. B 28 087201
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|