Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 076102    DOI: 10.1088/1674-1056/ab8a39
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain

Xing-Yi Tan(谭兴毅)1, Li-Li Liu(刘利利)1, Da-Hua Ren(任达华)2
1 Department of Physics, Chongqing Three Gorges University, Wanzhou 404100, China;
2 School of Information Engineering, Hubei Minzu University, Enshi 445000, China
Abstract  Van der Waals (vdW) heterostructures have attracted significant attention because of their widespread applications in nanoscale devices. In the present work, we investigate the electronic structures of germanane/antimonene vdW heterostructure in response to normal strain and an external electric field by using the first-principles calculations based on density functional theory (DFT). The results demonstrate that the germanane/antimonene vdW heterostructure behaves as a metal in a [-1, -0.6] V/Å range, while it is a direct semiconductor in a [-0.5, 0.2] V/Å range, and it is an indirect semiconductor in a [0.3, 1.0] V/Å range. Interestingly, the band alignment of germanane/antimonene vdW heterostructure appears as type-Ⅱ feature both in a [-0.5, 0.1] range and in a [0.3, 1] V/Å range, while it shows the type-I character at 0.2 V/Å. In addition, we find that the germanane/antimonene vdW heterostructure is an indirect semiconductor both in an in-plane biaxial strain range of [-5%, -3%] and in an in-plane biaxial strain range of [3%, 5%], while it exhibits a direct semiconductor character in an in-plane biaxial strain range of [-2%, 2%]. Furthermore, the band alignment of the germanane/antimonene vdW heterostructure changes from type-Ⅱ to type-I at an in-plane biaxial strain of -3%. The adjustable electronic structure of this germanane/antimonene vdW heterostructure will pave the way for developing the nanoscale devices.
Keywords:  germanane/antimonene vdW heterostructure      electronic structures      external electric field      strain      first-principles calculations  
Received:  03 March 2020      Revised:  13 April 2020      Published:  05 July 2020
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864011).
Corresponding Authors:  Xing-Yi Tan     E-mail:  tanxy@sanxiau.edu.cn

Cite this article: 

Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华) Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain 2020 Chin. Phys. B 29 076102

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Gibaja C, Rodriguez-San-Miguel D, Ares P, Gómez-Herrero J, Varela M, Gillen R, Maultzsch J, Hauke F, Hirsch A and Abellán G 2016 Angew. Chem. Int. Edit. 55 14345
[3] Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W and Ni Z 2016 Nat. Commun. 7 13352
[4] Singh D, Gupta S K, Sonvane Y and Lukačević I 2016 J. Mater. Chem. C 4 6386
[5] Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Angew. Chem. Int. Edit. 54 3112
[6] Bianco E, Butler S, Jiang S, Restrepo O D, Windl W and Goldberger J E 2013 ACS Nano 7 4414
[7] Wei W, Dai Y, Huang B and Jacob T 2013 Phys. Chem. Chem. Phys. 15 8789
[8] Madhushankar B, Kaverzin A, Giousis T, Potsi G, Gournis D, Rudolf P, Blake G, Van Der Wal C and Van Wees B 2017 2D Mater. 4 021009
[9] Zhou L, Kou L, Sun Y, Felser C, Hu F, Shan G, Smith S C, Yan B and Frauenheim T 2015 Nano Lett. 15 7867
[10] Huang C, Du Y, Wu H, Xiang H, Deng K and Kan E 2018 Phys. Rev. Lett. 120 147601
[11] Huang C, Zhou J, Wu H, Deng K, Jena P and Kan E 2017 Phys. Rev. B 95 045113
[12] Guo Y, Dai J, Zhao J, Wu C, Li D, Zhang L, Ning W, Tian M, Zeng X C and Xie Y 2014 Phys. Rev. Lett. 113 157202
[13] Li S L, Tsukagoshi K, Orgiu E and Samorí P 2016 Chem. Soc. Rev. 45 118
[14] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[15] Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 ACS Nano 8 1102
[16] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
[17] Liu L, Feng Y and Shen Z 2003 Phys. Rev. B 68 104102
[18] Preobrajenski A, Nesterov M, Ng M L, Vinogradov A and Mårtensson N 2007 Chem. Phys. Lett. 446 119
[19] Schedin F, Geim A K, Morozov S V, Hill E, Blake P, Katsnelson M and Novoselov K S 2007 Nat. Mater. 6 652
[20] Geim A K and Grigorieva I V 2013 Nature 499 419
[21] Novoselov K, Mishchenko A, Carvalho A and Neto A C 2016 Science 353 aac9439
[22] Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y and Duan X 2016 Nat. Rev. Mater. 1 16042
[23] Jariwala D, Marks T J and Hersam M C 2017 Nat. Mater. 16 170
[24] Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, Aldave D A, Díaz-Tendero S, Alcamí M, Martín F, Gómez-Herrero J and Zamora F 2016 Adv. Mater. 28 6332
[25] Lei T, Liu C, Zhao J L, Li J M, Li Y P, Wang J O, Wu R, Qian H J, Wang H Q and Ibrahim K 2016 J. Appl. Phys. 119 015302
[26] Fortin-Deschênes M, Waller O, Mentes T, Locatelli A, Mukherjee S, Genuzio F, Levesque P, Hébert A, Martel R and Moutanabbir O 2017 Nano Lett. 17 4970
[27] Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L and Zhu S Y 2017 Adv. Mater. 29 1605407
[28] Wang G, Pandey R and Karna S P 2015 ACS Appl. Mater. Inte. 7 11490
[29] Zhao M, Zhang X and Li L 2015 Sci. Rep. 5 16108
[30] Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, Aldave D A, Díaz-Tendero S, Alcamí M, Martín F, Gómez-Herrero J and Zamora F 2016 Adv. Mater. 28 6515
[31] Pizzi G, Gibertini M, Dib E, Marzari N, Iannaccone G and Fiori G 2016 Nat. Commun. 7 12585
[32] Zhang Z, Zhang Y, Xie Z, Wei X, Guo T, Fan J, Ni L, Tian Y, Liu J and Duan L 2019 Phys. Chem. Chem. Phys. 21 5627
[33] Wang N, Cao D, Wang J, Liang P, Chen X and Shu H 2017 J. Mater. Chem. C 5 9687
[34] Wang X, Quhe R, Cui W, Zhi Y, Huang Y, An Y, Dai X, Tang Y, Chen W and Wu Z 2018 Carbon 129 738
[35] Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S and Gao H J 2014 Adv. Mater. 26 4820
[36] Ghosh R K, Brahma M and Mahapatra S 2014 IEEE T. Electron. Dev. 61 2309
[37] Li Y and Chen Z 2014 J. Phys. Chem. C 118 1148
[38] Zhang R W, Zhang C W, Ji W X, Li F, Ren M J, Li P, Yuan M and Wang P J 2015 Phys. Chem. Chem. Phys. 17 12194
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[41] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[42] ToolKit A 2014 S http://www.quantumwise.com
[43] Lee K, Murray E D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101
[44] Garcia J C, De Lima D B, Assali L V and Justo J F 2011 J. Phys. Chem. C 115 13242
[45] Lu H, Gao J, Hu Z and Shao X 2016 RSC Adv. 6 102724
[46] Chen X, Yang Q, Meng R, Jiang J, Liang Q, Tan C and Sun X 2016 J. Mater. Chem. C 4 5434
[47] Wang S and Yu J 2018 Thin Solid Films 654 107
[48] Wang S and Yu J 2018 Appl. Phys. A 124 487
[49] Guo X, Li D and Xi L 2018 Chin. Phys. B 27 097506
[50] Zhang P, Wang J and Duan X M 2016 Chin. Phys. B 25 037302
[51] Wang S K and Jun W 2015 Chin. Phys. B 24 037202
[52] Zhang L, He D W and He J Q 2019 Chin. Phys. B 28 087201
[1] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[2] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[3] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[4] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[5] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[6] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[7] Stretchable electromagnetic interference shielding and antenna for wireless strain sensing by anisotropic micron-steel-wire based conductive elastomers
Xiaoyu Hu(胡晓宇), Linlin Mou(牟琳琳), and Zunfeng Liu(刘遵峰). Chin. Phys. B, 2021, 30(1): 018401.
[8] Protein-protein docking with interface residue restraints
Hao Li(李豪) and Sheng-You Huang(黄胜友). Chin. Phys. B, 2021, 30(1): 018703.
[9] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[10] Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film
Zhi-Bin Ling(令志斌), Qing-Ye Zhang(张庆业), Cheng-Peng Yang(杨成鹏), Xiao-Tian Li(李晓天), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜), Huai-Wen Yang(杨怀文), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 096802.
[11] Electronic structures, magnetic properties, and martensitic transformation in all-d-metal Heusler-like alloys Cd2MnTM(TM=Fe, Ni, Cu)
Yong Li(李勇), Peng Xu(徐鹏), Xiaoming Zhang(张小明), Guodong Liu(刘国栋), Enke Liu(刘恩克), Lingwei Li(李领伟). Chin. Phys. B, 2020, 29(8): 087101.
[12] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[13] Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain
Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉). Chin. Phys. B, 2020, 29(7): 077201.
[14] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[15] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
No Suggested Reading articles found!