Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(7): 076102    DOI: 10.1088/1674-1056/ab8a39
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain

Xing-Yi Tan(谭兴毅)1, Li-Li Liu(刘利利)1, Da-Hua Ren(任达华)2
1 Department of Physics, Chongqing Three Gorges University, Wanzhou 404100, China;
2 School of Information Engineering, Hubei Minzu University, Enshi 445000, China
Abstract  Van der Waals (vdW) heterostructures have attracted significant attention because of their widespread applications in nanoscale devices. In the present work, we investigate the electronic structures of germanane/antimonene vdW heterostructure in response to normal strain and an external electric field by using the first-principles calculations based on density functional theory (DFT). The results demonstrate that the germanane/antimonene vdW heterostructure behaves as a metal in a [-1, -0.6] V/Å range, while it is a direct semiconductor in a [-0.5, 0.2] V/Å range, and it is an indirect semiconductor in a [0.3, 1.0] V/Å range. Interestingly, the band alignment of germanane/antimonene vdW heterostructure appears as type-Ⅱ feature both in a [-0.5, 0.1] range and in a [0.3, 1] V/Å range, while it shows the type-I character at 0.2 V/Å. In addition, we find that the germanane/antimonene vdW heterostructure is an indirect semiconductor both in an in-plane biaxial strain range of [-5%, -3%] and in an in-plane biaxial strain range of [3%, 5%], while it exhibits a direct semiconductor character in an in-plane biaxial strain range of [-2%, 2%]. Furthermore, the band alignment of the germanane/antimonene vdW heterostructure changes from type-Ⅱ to type-I at an in-plane biaxial strain of -3%. The adjustable electronic structure of this germanane/antimonene vdW heterostructure will pave the way for developing the nanoscale devices.
Keywords:  germanane/antimonene vdW heterostructure      electronic structures      external electric field      strain      first-principles calculations  
Received:  03 March 2020      Revised:  13 April 2020      Accepted manuscript online: 
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  74.78.Fk (Multilayers, superlattices, heterostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11864011).
Corresponding Authors:  Xing-Yi Tan     E-mail:  tanxy@sanxiau.edu.cn

Cite this article: 

Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华) Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain 2020 Chin. Phys. B 29 076102

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Gibaja C, Rodriguez-San-Miguel D, Ares P, Gómez-Herrero J, Varela M, Gillen R, Maultzsch J, Hauke F, Hirsch A and Abellán G 2016 Angew. Chem. Int. Edit. 55 14345
[3] Ji J, Song X, Liu J, Yan Z, Huo C, Zhang S, Su M, Liao L, Wang W and Ni Z 2016 Nat. Commun. 7 13352
[4] Singh D, Gupta S K, Sonvane Y and Lukačević I 2016 J. Mater. Chem. C 4 6386
[5] Zhang S, Yan Z, Li Y, Chen Z and Zeng H 2015 Angew. Chem. Int. Edit. 54 3112
[6] Bianco E, Butler S, Jiang S, Restrepo O D, Windl W and Goldberger J E 2013 ACS Nano 7 4414
[7] Wei W, Dai Y, Huang B and Jacob T 2013 Phys. Chem. Chem. Phys. 15 8789
[8] Madhushankar B, Kaverzin A, Giousis T, Potsi G, Gournis D, Rudolf P, Blake G, Van Der Wal C and Van Wees B 2017 2D Mater. 4 021009
[9] Zhou L, Kou L, Sun Y, Felser C, Hu F, Shan G, Smith S C, Yan B and Frauenheim T 2015 Nano Lett. 15 7867
[10] Huang C, Du Y, Wu H, Xiang H, Deng K and Kan E 2018 Phys. Rev. Lett. 120 147601
[11] Huang C, Zhou J, Wu H, Deng K, Jena P and Kan E 2017 Phys. Rev. B 95 045113
[12] Guo Y, Dai J, Zhao J, Wu C, Li D, Zhang L, Ning W, Tian M, Zeng X C and Xie Y 2014 Phys. Rev. Lett. 113 157202
[13] Li S L, Tsukagoshi K, Orgiu E and Samorí P 2016 Chem. Soc. Rev. 45 118
[14] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[15] Jariwala D, Sangwan V K, Lauhon L J, Marks T J and Hersam M C 2014 ACS Nano 8 1102
[16] Qian X, Liu J, Fu L and Li J 2014 Science 346 1344
[17] Liu L, Feng Y and Shen Z 2003 Phys. Rev. B 68 104102
[18] Preobrajenski A, Nesterov M, Ng M L, Vinogradov A and Mårtensson N 2007 Chem. Phys. Lett. 446 119
[19] Schedin F, Geim A K, Morozov S V, Hill E, Blake P, Katsnelson M and Novoselov K S 2007 Nat. Mater. 6 652
[20] Geim A K and Grigorieva I V 2013 Nature 499 419
[21] Novoselov K, Mishchenko A, Carvalho A and Neto A C 2016 Science 353 aac9439
[22] Liu Y, Weiss N O, Duan X, Cheng H C, Huang Y and Duan X 2016 Nat. Rev. Mater. 1 16042
[23] Jariwala D, Marks T J and Hersam M C 2017 Nat. Mater. 16 170
[24] Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, Aldave D A, Díaz-Tendero S, Alcamí M, Martín F, Gómez-Herrero J and Zamora F 2016 Adv. Mater. 28 6332
[25] Lei T, Liu C, Zhao J L, Li J M, Li Y P, Wang J O, Wu R, Qian H J, Wang H Q and Ibrahim K 2016 J. Appl. Phys. 119 015302
[26] Fortin-Deschênes M, Waller O, Mentes T, Locatelli A, Mukherjee S, Genuzio F, Levesque P, Hébert A, Martel R and Moutanabbir O 2017 Nano Lett. 17 4970
[27] Wu X, Shao Y, Liu H, Feng Z, Wang Y L, Sun J T, Liu C, Wang J O, Liu Z L and Zhu S Y 2017 Adv. Mater. 29 1605407
[28] Wang G, Pandey R and Karna S P 2015 ACS Appl. Mater. Inte. 7 11490
[29] Zhao M, Zhang X and Li L 2015 Sci. Rep. 5 16108
[30] Ares P, Aguilar-Galindo F, Rodríguez-San-Miguel D, Aldave D A, Díaz-Tendero S, Alcamí M, Martín F, Gómez-Herrero J and Zamora F 2016 Adv. Mater. 28 6515
[31] Pizzi G, Gibertini M, Dib E, Marzari N, Iannaccone G and Fiori G 2016 Nat. Commun. 7 12585
[32] Zhang Z, Zhang Y, Xie Z, Wei X, Guo T, Fan J, Ni L, Tian Y, Liu J and Duan L 2019 Phys. Chem. Chem. Phys. 21 5627
[33] Wang N, Cao D, Wang J, Liang P, Chen X and Shu H 2017 J. Mater. Chem. C 5 9687
[34] Wang X, Quhe R, Cui W, Zhi Y, Huang Y, An Y, Dai X, Tang Y, Chen W and Wu Z 2018 Carbon 129 738
[35] Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S and Gao H J 2014 Adv. Mater. 26 4820
[36] Ghosh R K, Brahma M and Mahapatra S 2014 IEEE T. Electron. Dev. 61 2309
[37] Li Y and Chen Z 2014 J. Phys. Chem. C 118 1148
[38] Zhang R W, Zhang C W, Ji W X, Li F, Ren M J, Li P, Yuan M and Wang P J 2015 Phys. Chem. Chem. Phys. 17 12194
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[41] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[42] ToolKit A 2014 S http://www.quantumwise.com
[43] Lee K, Murray E D, Kong L, Lundqvist B I and Langreth D C 2010 Phys. Rev. B 82 081101
[44] Garcia J C, De Lima D B, Assali L V and Justo J F 2011 J. Phys. Chem. C 115 13242
[45] Lu H, Gao J, Hu Z and Shao X 2016 RSC Adv. 6 102724
[46] Chen X, Yang Q, Meng R, Jiang J, Liang Q, Tan C and Sun X 2016 J. Mater. Chem. C 4 5434
[47] Wang S and Yu J 2018 Thin Solid Films 654 107
[48] Wang S and Yu J 2018 Appl. Phys. A 124 487
[49] Guo X, Li D and Xi L 2018 Chin. Phys. B 27 097506
[50] Zhang P, Wang J and Duan X M 2016 Chin. Phys. B 25 037302
[51] Wang S K and Jun W 2015 Chin. Phys. B 24 037202
[52] Zhang L, He D W and He J Q 2019 Chin. Phys. B 28 087201
[1] Cobalt anchored CN sheet boosts the performance of electrochemical CO oxidation
Xu Liu(刘旭), Jun-Chao Huang(黄俊超), and Xiang-Mei Duan(段香梅). Chin. Phys. B, 2021, 30(6): 067104.
[2] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[3] Effect of strain on electrochemical performance of Janus MoSSe monolayer anode material for Li-ion batteries: First-principles study
Guoqing Wang(王国庆), Wenjing Qin(秦文静), and Jing Shi(石晶). Chin. Phys. B, 2021, 30(4): 046301.
[4] Two-dimensional MnN utilized as high-capacity anode for Li-ion batteries
Junping Hu(胡军平), Zhangyin Wang(王章寅), Genrui Zhang(张根瑞), Yu Liu(刘宇), Ning Liu(刘宁), Wei Li(李未), Jianwen Li(李健文), Chuying Ouyang(欧阳楚英), and Shengyuan A. Yang(杨声远). Chin. Phys. B, 2021, 30(4): 046302.
[5] Passivation of PEA+ to MAPbI3 (110) surface states by first-principles calculations
Wei Hu(胡伟), Ying Tian(田颖), Hong-Tao Xue(薛红涛), Wen-Sheng Li(李文生), and Fu-Ling Tang(汤富领). Chin. Phys. B, 2021, 30(4): 047101.
[6] Grain boundary effect on structural, optical, and electrical properties of sol-gel synthesized Fe-doped SnO2 nanoparticles
Archana V, Lakshmi Mohan, Kathirvel P, and Saravanakumar S. Chin. Phys. B, 2021, 30(4): 048202.
[7] Transport property of inhomogeneous strained graphene
Bing-Lan Wu(吴冰兰), Qiang Wei(魏强), Zhi-Qiang Zhang(张智强), and Hua Jiang(江华). Chin. Phys. B, 2021, 30(3): 030504.
[8] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[9] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[10] Stretchable electromagnetic interference shielding and antenna for wireless strain sensing by anisotropic micron-steel-wire based conductive elastomers
Xiaoyu Hu(胡晓宇), Linlin Mou(牟琳琳), and Zunfeng Liu(刘遵峰). Chin. Phys. B, 2021, 30(1): 018401.
[11] Protein-protein docking with interface residue restraints
Hao Li(李豪) and Sheng-You Huang(黄胜友). Chin. Phys. B, 2021, 30(1): 018703.
[12] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[13] High temperature strain glass in Ti-Au and Ti-Pt based shape memory alloys
Shuai Ren(任帅), Chang Liu(刘畅), and Wei-Hua Wang(汪卫华). Chin. Phys. B, 2021, 30(1): 018101.
[14] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[15] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
No Suggested Reading articles found!