Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067403    DOI: 10.1088/1674-1056/ab8a37
Special Issue: SPECIAL TOPIC — Topological 2D materials
SPECIAL TOPIC—Topological 2D materials Prev   Next  

Effect of graphene grain boundaries on MoS2/graphene heterostructures

Yue Zhang(张悦)1, Xiangzhe Zhang(张祥喆)2, Chuyun Deng(邓楚芸)2, Qi Ge(葛奇)3, Junjie Huang(黄俊杰)1, Jie Lu(卢捷)1, Gaoxiang Lin(林高翔)1, Zekai Weng(翁泽锴)1, Xueao Zhang(张学骜)1,3, Weiwei Cai(蔡伟伟)1,3
1 College of Physical Science and Technology, Xiamen University, Xiamen 361005, China;
2 College of Arts and Science, National University of Defense Technology, Changsha 410073, China;
3 Chongqing 2D Materials Institute, Chongqing 400714, China
Abstract  The grain boundaries of graphene are disordered topological defects, which would strongly affect the physical and chemical properties of graphene. In this paper, the spectral characteristics and photoresponse of MoS2/graphene heterostructures are studied. It is found that the blueshift of the G and 2D peaks of graphene in Raman spectrum is due to doping. The lattice mismatch at the graphene boundaries results in a blueshift of MoS2 features in the photoluminescence spectra, comparing to the MoS2 grown on SiO2. In addition, the photocurrent signal in MoS2/hexagonal single-crystal graphene heterostructures is successfully captured without bias, but not in MoS2/polycrystalline graphene heterostructures. The electron scattering at graphene grain boundaries affects the optical response of MoS2/graphene heterostructures. The photoresponse of the device is attributed to the optical absorption and response of MoS2 and the high carrier mobility of graphene. These findings offer a new approach to develop optoelectronic devices based on two-dimensional material heterostructures.
Keywords:  photoresponse      heterostructures      grain-boundary  
Received:  15 December 2019      Revised:  13 April 2020      Published:  05 June 2020
PACS:  74.25.Gz (Optical properties)  
  78.20.Jq (Electro-optical effects)  
  42.70.Gi (Light-sensitive materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874423).
Corresponding Authors:  Xueao Zhang, Weiwei Cai     E-mail:  xazhang@xmu.edu.cn;wwcai@xmu.edu.cn

Cite this article: 

Yue Zhang(张悦), Xiangzhe Zhang(张祥喆), Chuyun Deng(邓楚芸), Qi Ge(葛奇), Junjie Huang(黄俊杰), Jie Lu(卢捷), Gaoxiang Lin(林高翔), Zekai Weng(翁泽锴), Xueao Zhang(张学骜), Weiwei Cai(蔡伟伟) Effect of graphene grain boundaries on MoS2/graphene heterostructures 2020 Chin. Phys. B 29 067403

[1] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[2] Butler S Z, Hollen S M, Cao L, Cui Y, Gupta J A, Gutierrez H R, Heinz T F, Hong S S, Huang J, Ismach A F, Johnston-Halperin E, Kuno M, Plashnitsa V V, Robinson R D, Ruoff R S, Salahuddin S, Shan J, Shi L, Spencer M G, Terrones M, Windl W and Goldberger J E 2013 ACS Nano 7 2898
[3] Chhowalla M, Shin H S, Eda G, Li L J, Loh K P and Zhang H 2013 Nat. Chem. 5 263
[4] Xu M, Liang T, Shi M and Chen H 2013 Chem. Rev. 113 3766
[5] Ago H, Endo H, Solis-Fernandez P, Takizawa R, Ohta Y, Fujita Y, Yamamoto K and Tsuji M 2015 ACS Appl. Mater. Interfaces 7 5265
[6] Wang C C, Liu X S, Wang Z Y, Zhao M, He H and Zou J Y 2018 Chin. Phys. B 27 118106
[7] Lim H, Yoon S I, Kim G, Jang A R and Shin H S 2014 Chem. Mater. 26 4891
[8] Hu R X, Ma X L, An C H and Liu J 2019 Chin. Phys. B 28 117802
[9] Lee G H, Yu Y J, Cui X, Petrone N, Lee C H, Choi M S, Lee D Y, Lee C, Yoo W J, Watanabe K, Taniguchi T, Nuckolls C, Kim P and Hone J 2013 ACS Nano 7 7931
[10] Biswas C and Lee Y H 2011 Adv. Funct. Mater. 21 3806
[11] Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M and Chhowalla M 2011 Nano Lett. 11 5111
[12] Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J, Stauber T, Peres N M and Geim A K 2008 Science 320 1308
[13] Meng J, Song H D, Li C Z, Jin Y, Tang L, Liu D, Liao Z M, Xiu F and Yu D P 2015 Nanoscale 7 11611
[14] Zhang W, Chuu C P, Huang J K, Chen C H, Tsai M L, Chang Y H, Liang C T, Chen Y Z, Chueh Y L, He J H, Chou M Y and Li L J 2015 Sci. Rep. 4 3826
[15] Roy K, Padmanabhan M, Goswami S, Sai T P, Ramalingam G, Raghavan S and Ghosh A 2013 Nat. Nanotechnol. 8 826
[16] Xu H, Wu J, Feng Q, Mao N, Wang C and Zhang J 2014 Small 10 2300
[17] Yasaei P, Fathizadeh A, Hantehzadeh R, Majee A K, El-Ghandour A, Estrada D, Foster C, Aksamija Z, Khalili-Araghi F and Salehi-Khojin A 2015 Nano Lett. 15 4532
[18] Yu Q, Jauregui L A, Wu W, Colby R, Tian J, Su Z, Cao H, Liu Z, Pandey D, Wei D, Chung T F, Peng P, Guisinger N P, Stach E A, Bao J, Pei S S and Chen Y P 2011 Nat. Mater. 10 443
[19] Malola S, Hakkinen H and Koskinen P 2010 Phys. Rev. B 81 165447
[20] Kim K, Lee Z, Regan W, Kisielowski C, Crommie M F and Zettl A 2011 ACS Nano 5 2142
[21] Lu J, Bao Y, Su C L and Loh K P 2013 ACS Nano 7 8350
[22] Yazyev O V and Louie S G 2010 Phys. Rev. B 81 195420
[23] Zhan L, Wan W, Zhu Z, Zhao Z, Zhang Z, Shih T M and Cai W 2017 Nanotechnology 28 305601
[24] Zhu Z, Zhan L, Wan W, Zhao Z, Shih T M and Cai W 2017 Nanoscale 9 14804
[25] Li X, Cai W, An J, Kim S, Nah J, Yang D, Piner R, Velamakanni A, Jung I, Tutuc E, Banerjee S K, Colombo L and Ruoff R S 2009 Science 324 1312
[26] Zhao Z, Shan Z, Zhang C, Li Q, Tian B, Huang Z, Lin W, Chen X, Ji H, Zhang W and Cai W 2015 Small 11 1418
[27] Li X, Wu J, Mao N, Zhang J, Lei Z, Liu Z and Xu H 2015 Carbon 92 126
[28] Reina A, Son H B, Jiao L Y, Fan B, Dresselhaus M S, Liu Z F and Kong J 2008 J. Phys. Chem. C 112 17741
[29] Ferrari A C, Meyer J C, Scardaci V, Casiraghi C, Lazzeri M, Mauri F, Piscanec S, Jiang D, Novoselov K S, Roth S and Geim A K 2006 Phys. Rev. Lett. 97 187401
[30] Ago H, Kawahara K, Ogawa Y, Tanoue S, Bissett M A, Tsuji M, Sakaguchi H, Koch R J, Fromm F, Seyller T, Komatsu K and Tsukagoshi K 2013 Appl. Phys. Express 6 075101
[31] Zhou K G, Withers F, Cao Y, Hu S, Yu G L and Casiraghi C 2014 ACS Nano 8 9914
[32] Zhan Y, Liu Z, Najmaei S, Ajayan P M and Lou J 2012 Small 8 966
[33] Wu S, Huang C, Aivazian G, Ross J S, Cobden D H and Xu X 2013 ACS Nano 7 2768
[34] Lin Y F, Li W, Li S L, Xu Y, Aparecido-Ferreira A, Komatsu K, Sun H, Nakaharai S and Tsukagoshi K 2014 Nanoscale 6 795
[35] Xu X, Gabor N M, Alden J S, Van Der Zande A M and Mceuen P L 2010 Nano Lett. 10 562
[36] Gabor N M, Song J C W, Ma Q, Nair N L, Taychatanapat T, Watanabe K, Taniguchi T, Levitov L S and Jarillo-Herrero P 2011 Science 334 648
[1] Edge-and strain-induced band bending in bilayer-monolayer Pb2Se3 heterostructures
Peng Fan(范朋), Guojian Qian(钱国健), Dongfei Wang(王东飞), En Li(李恩), Qin Wang(汪琴), Hui Chen(陈辉), Xiao Lin(林晓), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2021, 30(1): 018105.
[2] Interfacial properties of g-C3N4/TiO2 heterostructures studied by DFT calculations
Chen-Shan Peng(彭春山), Yong-Dong Zhou(周永东), Sui-Shuan Zhang(张虽栓), and Zong-Yan Zhao(赵宗彦). Chin. Phys. B, 2021, 30(1): 017101.
[3] Superlubricity enabled dry transfer of non-encapsulated graphene
Zhe Ying(应哲), Aolin Deng(邓奥林), Bosai Lyu(吕博赛), Lele Wang(王乐乐), Takashi Taniguchi, Kenji Watanabe, Zhiwen Shi(史志文). Chin. Phys. B, 2019, 28(2): 028102.
[4] Room-temperature strong coupling between dipolar plasmon resonance in single gold nanorod and two-dimensional excitons in monolayer WSe2
Jinxiu Wen(温锦秀), Hao Wang(汪浩), Huanjun Chen(陈焕君), Shaozhi Deng(邓少芝), Ningsheng Xu(许宁生). Chin. Phys. B, 2018, 27(9): 096101.
[5] Review of photoinduced effect in manganite films and their heterostructures
Xin-Yu Li(李欣谕), Long Zhao(赵龙), Xiang-Yang Wei(魏向洋), Hao Li(李豪), Ke-Xin Jin(金克新). Chin. Phys. B, 2018, 27(11): 117501.
[6] Transport properties of doped Bi2Se3 and Bi2Te3 topological insulators and heterostructures
Zhen-Hua Wang(王振华), Xuan P A Gao(高翾), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2018, 27(10): 107901.
[7] Enhanced ultraviolet photoresponse based on ZnO nanocrystals/Pt bilayer nanostructure
Tong Xiao-Lin, Xia Xiao-Zhi, Li Qing-Xia. Chin. Phys. B, 2015, 24(6): 067306.
[8] Interface-guided mode of Lamb waves in a two-dimensional phononic crystal plate
Huang Ping-Ping, Yao Yuan-Wei, Wu Fu-Gen, Zhang Xin, Li Jing, Hu Ai-Zhen. Chin. Phys. B, 2015, 24(5): 054301.
[9] Effects of surface adsorbed oxygen, applied voltage, and temperature on UV photoresponse of ZnO nanorods
Zong Xian-Li, Zhu Rong. Chin. Phys. B, 2015, 24(10): 107703.
[10] Magnetic–optical bifunctional  CoPt3/Co multilayered nanowire arrays
Su Yi-Kun, Yan Zhi-Long, Wu Xi-Ming, Liu Huan, Ren Xiao, Yang Hai-Tao. Chin. Phys. B, 2015, 24(10): 107505.
[11] Enhanced ferroelectricity and ferromagnetism in Bi0.9Ba0.1FeO3/La2/3Sr1/3MnO3 heterostructure grown by pulsed laser deposition
Wen Xiao-Li, Chen Zhao, Lin Xin, Niu Li-Wei, Duan Meng-Meng, Zhang Yun-Jie, Dong Xiang-Lei, Chen Chang-Le. Chin. Phys. B, 2014, 23(11): 117703.
[12] Analysis of optoelectronic properties of TiO2 nanowiers/Si heterojunction arrays
Saeideh Ramezani Sani. Chin. Phys. B, 2014, 23(10): 107302.
[13] Growth and characterization of GaAs/InxGa1-xAs/GaAs axial nanowire heterostructures with symmetrical heterointerfaces
Lü Xiao-Long, Zhang Xia, Liu Xiao-Long, Yan Xin, Cui Jian-Gong, Li Jun-Shuai, Huang Yong-Qing, Ren Xiao-Min. Chin. Phys. B, 2013, 22(6): 066101.
[14] Influence of drain bias on the electron mobility in the AlGaN/AlN/GaN heterostructure field-effect transistors
Lü Yuan-Jie, Feng Zhi-Hong, Cai Shu-Jun, Dun Shao-Bo, Liu Bo, Yin Jia-Yun, Zhang Xiong-Wen, Fang Yu-Long, Lin Zhao-Jun, Meng Ling-Guo, Luan Chong-Biao. Chin. Phys. B, 2013, 22(6): 067104.
[15] Exchange couplings in magnetic films
Liu Wei, Liu Xiong-Hua, Cui Wei-Bin, Gong Wen-Jie, Zhang Zhi-Dong. Chin. Phys. B, 2013, 22(2): 027104.
No Suggested Reading articles found!