Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(9): 096701    DOI: 10.1088/1674-1056/ab8a34

Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor

He Guan(关赫), Cheng-Yu Jiang(姜成语), Shao-Xi Wang(王少熙)
Northwestern Polytechnical University, Xi'an 710072, China
Abstract  HfAlO/InAlAs metal-oxide-semiconductor capacitor (MOS capacitor) is considered as the most popular candidate of the isolated gate of InAs/AlSb high electron mobility transistor (HEMT). In order to improve the performance of the HfAlO/InAlAs MOS-capacitor, samples are annealed at different temperatures for investigating the HfAlO/InAlAs interfacial characyeristics and the device's electrical characteristics. We find that as annealing temperature increases from 280 ℃ to 480 ℃, the surface roughness on the oxide layer is improved. A maximum equivalent dielectric constant of 8.47, a minimum equivalent oxide thickness of 5.53 nm, and a small threshold voltage of -1.05 V are detected when being annealed at 380 ℃; furthermore, a low interfacial state density is yielded at 380 ℃, and this can effectively reduce the device leakage current density to a significantly low value of 1×10-7 A/cm2 at 3-V bias voltage. Therefore, we hold that 380 ℃ is the best compromised annealing temperature to ensure that the device performance is improved effectively. This study provides a reliable conceptual basis for preparing and applying HfAlO/InAlAs MOS-capacitor as the isolated gate on InAs/AlSb HEMT devices.
Keywords:  HfAlO/InAlAs MOS-capacitor      annealing temperature      interface      leakage current  
Received:  12 March 2020      Published:  05 September 2020
PACS:  67.30.hp (Interfaces)  
  68.37.-d (Microscopy of surfaces, interfaces, and thin films)  
  61.72.uj (III-V and II-VI semiconductors)  
Corresponding Authors:  He Guan     E-mail:

Cite this article: 

He Guan(关赫), Cheng-Yu Jiang(姜成语), Shao-Xi Wang(王少熙) Effect of annealing temperature on interfacial and electrical performance of Au-Pt-Ti/HfAlO/InAlAs metal-oxide-semiconductor capacitor 2020 Chin. Phys. B 29 096701

[1] Moschetti G, Wadefalk N and Nilsson P A 2011 Solid State Electron. 64 47
[2] Haddadi A, Chevallier R and Dehzangi A 2017 Appl. Phys. Lett. 110 101
[3] Guan H, Lv H L, Guo H and Zhang Y M 2015 J. Appl. Phys. 118 195702
[4] Malmkvist M, Lefebvre E, Borg M, Desplanque L, Wallart X and Dambrine G 2018 IEEE Trans. Microwave Theory & Tech. 56 2685
[5] Guan H and Guo H 2017 Chin. Phys. B 26 058501
[6] Moschetti G, Wadefalk N and Nilsson P A 2012 IEEE Microwave & Wireless Compon. Lett. 22 144
[7] Cui X R and Lv H L 2018 J. Infrared & Millimeter Waves 37 385
[8] Hashizume T, Ootomo S and Inagaki T 2003 J. Vac. Sci. Technol. B 21 1828
[9] Guan H and Lv H L 2018 Thin Solid Film 661 137
[10] Wu L F, Zhang Y M and Lv H L 2015 Jpn. J. Appl. Phys. 54 110303
[11] Liu L N, Choi H W, Xu J P and Tang W M 2007 IEEE Trans. Electron Dev. 65 72
[12] Jin C J, Lv H L, Zhang Y M and Guan H 2016 Thin Solid Films 619 48
[13] Mikhelashvili V, Meyler B and Shneider J 2005 Microelectron. Reliab. 45 933
[14] Gao J, He G and Liu M 2017 J. Alloys Compd. 691 504
[15] Jin C J, Lv H L, Zhang Y M and Guan H 2016 Solid-State Electron. 123 106
[16] Lin Y C, Trinh H D and Chuang T W 2013 IEEE Electron Dev. Lett. 34 1229
[17] Trinh H, Lin Y, Wang H, Chang C, Kakushima K and Iwai H 2012 Appl. Phys. Express 5 1104
[18] Altuntas H, Donmez I, Ozgit-Akgun C and Biyikli N 2014 J. Vac. Sci. Technol. A 32 041504
[19] Liu C, Zhang Y M, Zhang Y M and Lv H L 2014 J. Appl. Phys. 116 142101
[20] Maleev N A, Bobrov M A, Kuzmenkov A G, Vasil'Ev A P and Kulagina M M 2018 Tech. Phys. Lett. 44 862
[21] Asif M, Chen C, Peng D, Xi W and Zhi J 2018 Solid State Electron. 142 36
[22] Guan H and Jing C Y 2018 Coating 8 417
[23] Brennan B, Galatage R V and Thomas K 2013 J. Appl. Phys. 114 317
[24] Inci D, Cagla O and Necmi B 2013 J. Vac. Sci. Technol. A 31 01A110
[25] Guan H, Lv H L, Guo H, Zhang Y M, Zhang Y M and Wu L F 2015 Chin. Phys. B 24 126701
[26] Terman L M 1962 Solid State Electron. 5 285
[1] Improved efficiency and stability of perovskite solar cells with molecular ameliorating of ZnO nanorod/perovskite interface and Mg-doping ZnO
Zhenyun Zhang(张振雲), Lei Xu(许磊), and Junjie Qi(齐俊杰). Chin. Phys. B, 2021, 30(3): 038801.
[2] Vertical GaN Shottky barrier diode with thermally stable TiN anode
Da-Ping Liu(刘大平), Xiao-Bo Li(李小波), Tao-Fei Pu(蒲涛飞), Liu-An Li(李柳暗), Shao-Heng Cheng(成绍恒), and Qi-Liang Wang(王启亮). Chin. Phys. B, 2021, 30(3): 038101.
[3] Graphene/SrTiO3 interface-based UV photodetectors with high responsivity
Heng Yue(岳恒), Anqi Hu(胡安琪), Qiaoli Liu(刘巧莉), Huijun Tian(田慧军), Chengri Hu(胡成日), Xiansong Ren(任显松), Nianyu Chen(陈年域), Chen Ge(葛琛), Kuijuan Jin(金奎娟), and Xia Guo(郭霞). Chin. Phys. B, 2021, 30(3): 038502.
[4] Optical properties of several ternary nanostructures
Xiao-Long Tang(唐小龙), Xin-Lu Cheng(程新路), Hua-Liang Cao(曹华亮), and Hua-Dong Zeng(曾华东). Chin. Phys. B, 2021, 30(1): 017803.
[5] Improved electrical properties of NO-nitrided SiC/SiO2 interface after electron irradiation
Ji-Long Hao(郝继龙), Yun Bai(白云), Xin-Yu Liu(刘新宇), Cheng-Zhan Li(李诚瞻), Yi-Dan Tang(汤益丹), Hong Chen(陈宏), Xiao-Li Tian(田晓丽), Jiang Lu(陆江), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(9): 097301.
[6] Coupling analysis of transmission lines excited by space electromagnetic fields based on time domain hybrid method using parallel technique
Zhi-Hong Ye(叶志红), Xiao-Lin Wu(吴小林), Yao-Yao Li(李尧尧). Chin. Phys. B, 2020, 29(9): 090701.
[7] Exploring how hydrogen at gold-sulfur interface affects spin transport in single-molecule junction
Jing Zeng(曾晶), Ke-Qiu Chen(陈克求), Yanhong Zhou(周艳红). Chin. Phys. B, 2020, 29(8): 088503.
[8] Experimental evaluation of interface states during time-dependent dielectric breakdown of GaN-based MIS-HEMTs with LPCVD-SiNx gate dielectric
Ya-Wen Zhao(赵亚文), Liu-An Li(李柳暗), Tao-Tao Que(阙陶陶), Qiu-Ling Qiu(丘秋凌), Liang He(何亮), Zhen-Xing Liu(刘振兴), Jin-Wei Zhang(张津玮), Qian-Shu Wu(吴千树), Jia Chen(陈佳), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬). Chin. Phys. B, 2020, 29(6): 067203.
[9] Negative bias-induced threshold voltage instability and zener/interface trapping mechanism in GaN-based MIS-HEMTs
Qing Zhu(朱青), Xiao-Hua Ma(马晓华), Yi-Lin Chen(陈怡霖), Bin Hou(侯斌), Jie-Jie Zhu(祝杰杰), Meng Zhang(张濛), Mei Wu(武玫), Ling Yang(杨凌), Yue Hao(郝跃). Chin. Phys. B, 2020, 29(4): 047304.
[10] Two-step processed efficient perovskite solar cells via improving perovskite/PTAA interface using solvent engineering in PbI2 precursor
Cao-Yu Long(龙操玉), Ning Wang(王宁), Ke-Qing Huang(黄可卿), Heng-Yue Li(李恒月), Biao Liu(刘标), Jun-Liang Yang(阳军亮). Chin. Phys. B, 2020, 29(4): 048801.
[11] High-mobility SiC MOSFET with low density of interface traps using high pressure microwave plasma oxidation
Xin-Yu Liu(刘新宇), Ji-Long Hao(郝继龙), Nan-Nan You(尤楠楠), Yun Bai(白云), Yi-Dan Tang(汤益丹), Cheng-Yue Yang(杨成樾), Sheng-Kai Wang(王盛凯). Chin. Phys. B, 2020, 29(3): 037301.
[12] Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2020, 29(3): 034206.
[13] Three- and two-dimensional calculations for the interface anisotropy dependence of magnetic properties of exchange-spring Nd2Fe14B/α-Fe multilayers with out-of-plane easy axes
Qian Zhao(赵倩), Xin-Xin He(何鑫鑫), Francois-Jacques Morvan(李文瀚), Guo-Ping Zhao(赵国平), Zhu-Bai Li(李柱柏). Chin. Phys. B, 2020, 29(3): 037501.
[14] A 9% efficiency of flexible Mo-foil-based Cu2ZnSn(S, Se)4 solar cells by improving CdS buffer layer and heterojunction interface
Quan-Zhen Sun(孙全震), Hong-Jie Jia(贾宏杰), Shu-Ying Cheng(程树英), Hui Deng(邓辉)\ccclink, Qiong Yan(严琼), Bi-Wen Duan(段碧雯), Cai-Xia Zhang(张彩霞), Qiao Zheng(郑巧), Zhi-Yuan Yang(杨志远), Yan-Hong Luo(罗艳红), Qing-Bo Men(孟庆波), and Shu-Juan Huang(黄淑娟). Chin. Phys. B, 2020, 29(12): 128801.
[15] Atomic-level characterization of liquid/solid interface
Jiani Hong(洪嘉妮) and Ying Jiang(江颖). Chin. Phys. B, 2020, 29(11): 116803.
No Suggested Reading articles found!