Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067303    DOI: 10.1088/1674-1056/ab888c
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing

Yun-Ping Qi(祁云平)1,3, Li-Yuan Wang(王力源)1, Yu Zhang(张宇)1, Ting Zhang(张婷)1, Bao-He Zhang(张宝和)1, Xiang-Yu Deng(邓翔宇)1, Xiang-Xian Wang(王向贤)2
1 College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China;
2 School of Science, Lanzhou University of Technology, Lanzhou 730050, China;
3 Engineering Research Center of Gansu Provence for Intelligent Information Technology and Application, Northwest Normal University, Lanzhou 730070, China
Abstract  A single baffle metal-insulator-metal (MIM) waveguide coupled with a semi-circular cavity and a cross-shaped cavity is proposed based on the multiple Fano resonance characteristics of surface plasmon polaritons (SPPs) subwavelength structure. The isolated state formed by two resonators interferes with the wider continuous state mode formed by the metal baffle, forming Fano resonance that can independently be tuned into five different modes. The formation mechanism of Fano resonance is analyzed based on the multimode interference coupled mode theory (MICMT). The finite element method (FEM) and MICMT are used to simulate the transmission spectra of this structure and analyze the influence of structural parameters on the refractive index sensing characteristics. And the transmission responses calculated by the FEM simulation are consistent with the MICMT theoretical results very well. The results show that the figure of merit (FOM) can reach 193 and the ultra-high sensitivity is 1600 nm/RIU after the structure parameters have been optimized, and can provide theoretical basis for designing the high sensitive refractive index sensors based on SPPs waveguide for high-density photonic integration with excellent performance in the near future.
Keywords:  surface plasmon polaritons      MIM waveguide      Fano resonance      finite element method  
Received:  19 January 2020      Revised:  02 April 2020      Published:  05 June 2020
PACS:  73.20.Mf (Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))  
  42.79.-e (Optical elements, devices, and systems)  
  71.36.+c (Polaritons (including photon-phonon and photon-magnon interactions))  
  71.38.-k (Polarons and electron-phonon interactions)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61367005 and 61865008) and the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA078).
Corresponding Authors:  Yun-Ping Qi     E-mail:  yunpqi@126.com

Cite this article: 

Yun-Ping Qi(祁云平), Li-Yuan Wang(王力源), Yu Zhang(张宇), Ting Zhang(张婷), Bao-He Zhang(张宝和), Xiang-Yu Deng(邓翔宇), Xiang-Xian Wang(王向贤) Multiple Fano resonances in metal-insulator-metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing 2020 Chin. Phys. B 29 067303

[1] Fano U 1961 Phys. Rev. 124 1866
[2] Klimov V V, Pavlov A A, Treshin I V and Zabkov I V 2017 J. Phys. D: Appl. Phys. 50 285101
[3] Ren H, Li X, Zhang Q and Gu M 2016 Science 352 805
[4] Hu F, Yi H and Zhou Z 2011 Opt. Lett. 36 1500
[5] Yang Y R and Guan J F 2016 Acta Phys. Sin. 65 057301 (in Chinese)
[6] Liu C, Fu G, Wang F, Yi Z, Xu C, Yang L and Sun T 2019 Optik 196 163173
[7] Liu J Q, Wang L L, He M D, Huang W Q, Wang D, Zou B S and Wen S 2008 Opt. Express 16 4888
[8] Li J K, Chen Z Q, Yang H, Yi Z, Chen X, Yao W T, Duan T, Wu P H, Li J F and Yi Y G 2020 Nanomaterials 10 257
[9] Wang H Y, Su D, Yang S, Dou X M, Zhu H J, Jiang D S, Ni H Q, Niu Z C, Zhao C L and Sun B Q 2015 Chin. Phys. Lett. 32 107804
[10] Chen Y, Luo P, Tian Y N, Liu X F, Zhao Z Y and Zhu Q G 2017 Acta Opt. Sin. 37 0924002
[11] Li J K, Chen X F, Yi Z, Yang H, Tang Y G, Yi Y, Yao W T, Wang J Q and Yi Y G 2020 Mater. Today Energy 16 100390
[12] Wang Y Y, Chen Z Q, Xu D Y, Yi Z, Chen X F, Chen J, Tang Y J, Wu P H and Yi Y J 2020 Results Phys. 16 102951
[13] Qin F, Chen Z Q, Chen X F, Yi Z, Yao W T, Duan T, Wu P H, Yang H, Li G F and Yi Y G 2020 Nanomaterials 10 207
[14] Qi Y P, Zhang Y, Liu C Q, Zhang T, Zhang B H, Wang L Y, Deng X Y, Bai Y L and Wang X X 2020 Results Phys. 16 103012
[15] Qi Y P, Zhang Y, Liu C Q, Zhang T, Zhang B H, Wang L Y, Deng X Y, Wan X X and Yu Y 2020 Nanomaterials 10 533
[16] Chen J, Wang X X, Tang F, Ye X, Yang L M and Zhang Y B 2020 Results Phys. 16 102867
[17] Wu C C, Guo X D, Hu H, Yang X X and Dai Q 2019 Acta Phys. Sin. 68 148103 (in Chinese)
[18] Tong L, Wei H, Zhang S and Xu H 2014 Sensors 14 7959
[19] Zhang S, Bao K, Halas N J, Xu H and Nordlander P 2011 Nano Lett. 11 1657
[20] Lu H, Liu X, Mao D and Wang G 2012 Op. Lett. 37 3780
[21] Wen K, Hu Y, Chen L Zhou J, Lei L and Meng Z 2016 Plasmonics 11 315
[22] Wu D, Yin J, Tian J P and Yang R C 2018 J. Quantum Opt. 24 55 (in Chinese)
[23] Wu C, Khanikaev A B and Shvets G 2011 Phys. Rev. Lett. 106 107403
[24] Kim J, Soref R and Buchwald W R 2010 Opt. Express 18 17997
[25] Zheng S, Ruan Z, Gao S, Long Y, Li S, He M and Wang J 2017 Opt. Express 25 25655
[26] Qi Y P, Liu C Q, Hu B B, Deng X X and Wang X X 2019 Results Phys. 102777
[27] Fang Y H, Wen K H, Qin Y W, Li Z F and Wu B Y 2019 Opt. Commun. 12 452
[28] Chen J, Fan W, Zhang T, Tang C, Chen X, Wu J and Yu Y 2017 Opt. Express 25 3675
[29] Wu X J, Dou C, Xu W, Zhang G B, Tian R L and Liu H L 2019 Chin. Phys. B 28 014204
[30] Haus H A 1972 Phys. Rev. B 6 4370
[31] Johnson P B and Christy R W 1972 Phys. Rev. B 6 4370
[32] Liu N, Langguth L, Weiss T, Kästel J, Fleischhauer M, Pfau T and Giessen H 2009 Nat. Mater. 8 758
[33] Dionne J A, Sweatlock L A, Atwater H A and Polman A 2006 Phys. Rev. B 73 035407
[34] Zhang Q, Huang X G, Lin X S, Tao J and Jin X P 2009 Opt. Express 17 7549
[35] Hu F, Yi H and Zhou Z 2011 Opt. Express 19 4848
[36] Li S, Wang Y, Jiao R, Wang L, Duan G and Yu L 2017 Opt. Express 25 3525
[37] Shen J, Zhang X M, Li Q L, Wang X Y, Zhao Y J and Jia Y 2019 Chin. Phys. B 28 040503
[38] Wang G, Lu H, Liu X, Mao D and Duan L 2011 Opt. Express 19 3513
[39] Zhong H H, Zhou J H, Gu C J, Wang M, Fang Y T, Xu T and Zhou J 2017 Chin. Phys. B 26 127301
[40] Yang J, Song X, Chen Z, Cui L, Yang S and Yu L 2017 Plasmonics 12 1665
[41] Chen J, Li Z, Zou Y, Deng Z, Xiao J and Gong Q 2013 Plasmonics 8 1627
[42] Huang M, Chen D, Zhang L and Zhou J 2016 Chin. Phys. B 25 057303
[43] Li Z, Wen K, Chen L, Lei L, Zhou J, Zhou D and Wu B 2019 Appl. Opt. 58 4878
[44] Chen Y, Chen L, Wen K, Hu Y and Lin W 2019 Photon. Nanostruct.-Fundam. Appl. 100714
[45] Chen Y, Xu Y M and Cao J G 2019 Results Phys. 102420
[46] Ren X, Ren K and Cai Y 2017 Appl. Opt. 56 H1
[47] Liu N, Mesch M, Weiss T, Hentschel M and Giessen H 2010 Nano Lett. 10 2342
[48] Seyyed Hossein, Asadpour G, Solookinejad M, Panahi E and Ahmadi Sangachin 2016 Chin. Phys. B 25 034205
[49] Chen L Y, Tang Z X, Gao J L, Li D Y, Lei C X, Cheng Z Z, Tang S L and Du Y W 2016 Chin. Phys. B 25 113301
[50] Qi Y P, Zhou P Y, Zhang T, Zhang X W, Wang Y, Liu C and Wang X X 2019 Results Phys. 14 102506
[51] Qi Y P, Wang Y, Zhang X W, Liu C, Hu B B, Bai Y L and Wang X X 2019 Results Phys. 15 102495
[52] Wang X X, Zhu J K, Wen X L, Wu X X, Wu Y, Su Y W, Tong H, Qi Y P and Yang H 2019 Opt. Mater. Express 9 3079
[1] Plasmonic characteristics of suspended graphene-coated wedge porous silicon nanowires with Ag partition
Xu Wang(王旭), Jue Wang(王珏), Tao Ma(马涛), Heng Liu(刘恒), and Fang Wang(王芳). Chin. Phys. B, 2021, 30(1): 014207.
[2] Spoof surface plasmon polaritons excited leaky-wave antenna with continuous scanning range from endfire to forward
Tao Zhong(钟涛), Hou Zhang(张厚). Chin. Phys. B, 2020, 29(9): 094101.
[3] Stress and strain analysis of Si-based Ⅲ-V template fabricated by ion-slicing
Shuyan Zhao(赵舒燕), Yuxin Song(宋禹忻), Hao Liang(梁好), Tingting Jin(金婷婷), Jiajie Lin(林家杰), Li Yue(岳丽), Tiangui You(游天桂), Chang Wang(王长), Xin Ou(欧欣), Shumin Wang(王庶民). Chin. Phys. B, 2020, 29(7): 077303.
[4] Acoustic plasmonics of Au grating/Bi2Se3 thin film/sapphirehybrid structures
Weiwu Li(李伟武), Konstantin Riegel, Chuanpu Liu(刘传普), Alexey Taskin, Yoichi Ando, Zhimin Liao(廖志敏), Martin Dressel, Yuan Yan(严缘). Chin. Phys. B, 2020, 29(6): 067801.
[5] Optical modulation of repaired damage site on fused silica produced by CO2 laser rapid ablation mitigation
Chao Tan(谭超), Lin-Jie Zhao(赵林杰), Ming-Jun Chen(陈明君), Jian Cheng(程健), Zhao-Yang Yin(尹朝阳), Qi Liu(刘启), Hao Yang(杨浩), Wei Liao(廖威). Chin. Phys. B, 2020, 29(5): 054209.
[6] Extinction mechanisms of hyperbolic h-BN nanodisk
Runkun Chen(陈闰堃), Jianing Chen(陈佳宁). Chin. Phys. B, 2020, 29(5): 057802.
[7] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[8] Cherenkov terahertz radiation from Dirac semimetals surface plasmon polaritons excited by an electron beam
Tao Zhao(赵陶), Zhenhua Wu(吴振华). Chin. Phys. B, 2020, 29(3): 034101.
[9] A compact electro-absorption modulator based on graphene photonic crystal fiber
Guangwei Fu(付广伟), Ying Wang(王颖), Bilin Wang(王碧霖), Kaili Yang(杨凯丽), Xiaoyu Wang(王晓愚), Xinghu Fu(付兴虎), Wa Jin(金娃), Weihong Bi(毕卫红). Chin. Phys. B, 2020, 29(3): 034209.
[10] Properties of metal-insulator-metal waveguide loop reflector
Hu Long(龙虎), Xuan-Ke Zeng(曾选科), Yi Cai(蔡懿), Xiao-Wei Lu(陆小微), Hong-Yi Chen(陈红艺), Shi-Xiang Xu(徐世祥), Jing-Zhen Li(李景镇). Chin. Phys. B, 2019, 28(9): 094215.
[11] Damage characteristics of laser plasma shock wave on rear surface of fused silica glass
Xiong Shen(沈雄), Guo-Ying Feng(冯国英), Sheng Jing(景晟), Jing-Hua Han(韩敬华), Ya-Guo Li(李亚国), Kai Liu(刘锴). Chin. Phys. B, 2019, 28(8): 085202.
[12] Multiple Fano resonances in nanorod and nanoring hybrid nanostructures
Xijun Wu(吴希军), Ceng Dou(窦层), Wei Xu(徐伟), Guangbiao Zhang(张广彪), Ruiling Tian(田瑞玲), Hailong Liu(刘海龙). Chin. Phys. B, 2019, 28(1): 014204.
[13] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
[14] Characteristic plume morphologies of atmospheric Ar and He plasma jets excited by a pulsed microwave hairpin resonator
Zhao-Quan Chen(陈兆权), Ben-Kuan Zhou(周本宽), Huang Zhang(张煌), Ling-Li Hong(洪伶俐), Chang-Lin Zou(邹长林), Ping Li(李平), Wei-Dong Zhao(赵卫东), Xiao-Dong Liu(刘晓东), Olga Stepanova, A A Kudryavtsev. Chin. Phys. B, 2018, 27(5): 055202.
[15] Gap plasmon-enhanced photoluminescence of monolayer MoS2 in hybrid nanostructure
Le Yu(余乐), Di Liu(刘頔), Xiao-Zhuo Qi(祁晓卓), Xiao Xiong(熊霄), Lan-Tian Feng(冯兰天), Ming Li(李明), Guo-Ping Guo(郭国平), Guang-Can Guo(郭光灿), Xi-Feng Ren(任希锋). Chin. Phys. B, 2018, 27(4): 047302.
No Suggested Reading articles found!