Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067501    DOI: 10.1088/1674-1056/ab8886

Exact solution of a topological spin ring with an impurity

Xu-Chu Huang(黄旭初), Yi-Hua Song(宋艺华), Yi Sun(孙毅)
Department of Physics, Changji University, Changji 830011, China
Abstract  The spin-1/2 Heisenberg chain coupled to a spin-S impurity moment with anti-periodic boundary condition is studied via the off-diagonal Bethe ansatz method. The twisted boundary breaks the U(1) symmetry of the system, which leads to that the spin ring with impurity can not be solved by the conventional Bethe ansatz methods. By combining the properties of the R-matrix, the transfer matrix, and the quantum determinant, we derive the T-Q relation and the corresponding Bethe ansatz equations. The residual magnetizations of the ground states and the impurity specific heat are investigated. It is found that the residual magnetizations in this model strongly depend on the constraint of the topological boundary condition, the inhomogeneity of the impurity comparing with the hosts could depress the impurity specific heat in the thermodynamic limit. This method can be expand to other integrable impurity models without U(1) symmetry.
Keywords:  Bethe ansatz      impurity      topological spin ring  
Received:  26 October 2019      Revised:  17 March 2020      Published:  05 June 2020
PACS:  75.30.Hx (Magnetic impurity interactions)  
  02.30.Ik (Integrable systems)  
  72.10.Fk (Scattering by point defects, dislocations, surfaces, and other imperfections (including Kondo effect))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11664001).
Corresponding Authors:  Yi-Hua Song     E-mail:

Cite this article: 

Xu-Chu Huang(黄旭初), Yi-Hua Song(宋艺华), Yi Sun(孙毅) Exact solution of a topological spin ring with an impurity 2020 Chin. Phys. B 29 067501

[1] Kondo J 1964 Prog. Theor. Phys. 32 37
[2] Anderson P W 1970 J. Phys. C 3 2436
[3] Bayat A, Bose S, Sodano P and Johannessonm H 2012 Phys. Rev. Lett. 109 066403
[4] Wagner C, Chowdhury T, Pixley J H and Ingersent K 2018 Phys. Rev. Lett. 121 147602
[5] Choo K, Keyserlingk C W von, Regnault N and Neupert T 2018 Phys. Rev. Lett. 121 086808
[6] Noguchi R, Takahashi T, Kuroda K, Ochi M, Shirasawa T, Sakano M, Bareille C, Nakayama M, Watson M D,Yaji K,Harasawa A, Iwasawa H, Dudin P, Kim T K, Hoesch M, Kandyba V, Giampietri A, Barinov A, Shin S, Arita R,Sasagawa T and Kondo T 2019 Nature 566 518
[7] Stashans A and Rivera K 2016 Chin. Phys. B 33 97102
[8] Li Y, Xu B, Hu S Y, Li Y L, Li Q L and Liu W 2015 Chin. Phys. B 32 67502
[9] Jiang F X, Xi S B, Ma R R, Qin X F, Fan X C, Zhang M G, Zhou J Q and Xu X H 2013 Chin. Phys. B 30 047501
[10] Nadri F, Mardaani M and Rabani H 2019 Chin. Phys. B 28 017202
[11] Frahm H and Zvyagin A A 1997 J. Phys.: Condens. Matter 9 9939
[12] Wang Y P 1997 Phys. Rev. B 56 14045
[13] Andrei N and Johannesson H 1984 Phys. Lett. A 100 108
[14] Lee K J B and Schlottmann P 1988 Phys. Rev. B 37 379
[15] Xia Y, Qian D, Hsieh D, Wray L, Pal A, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Nature Phys. 5 398
[16] Xu S Y, Xia Y, Wray L A, Jia S, Meier F, Dil J H, Osterwalder J, Slomski B, Bansil A, Lin H, Cava R J and Hasan M Z 2011 Science 332 560
[17] Yang C N 1967 Phys. Rev. Lett. 19 1312
[18] Baxter R J 1971 Phys. Rev. Lett. 26 832
[19] Baxter R J 1972 Ann. Phys. 70 193
[20] Baxter R J 1982 Exactly Solved Models in Statistical Mechanics (New York: Berkeley) pp. 180–185
[21] Niccoli G 2013 Nucl. Phys. B 870 390
[22] Niccoli G 2013 J. Math. Phys. 54 053516
[23] Cao J P, Yang W L, Shi K J and Wang Y P 2013 Phys. Rev. Lett. 111 137201
[24] Cao J P, Yang W L, Shi K J and Wang Y P 2013 Nucl. Phys. B 875 152
[25] Nepomechie R I 2013 J. Phys. A: Math. Theor. 46 442002
[26] Yang K H, Song B, Wang Y P and Han R S 2002 Chin. Phys. Lett 19 111
[27] Bai X F, Zhao Y W, Yin H W and Eerdunchaolu 2018 Acta Phys. Sin. 67 177801 (in Chinese)
[28] Lu H F, Lu H Z, Shen S Q and Ng T K 2013 Phys. Rev. B 87 195122
[29] Shen Y, Dong J Q and Xu H B 2018 Acta Phys. Sin. 67 195203 (in Chinese)
[30] Wu X Y, Han W H and Yang F H 2019 Acta Phys. Sin. 68 087301 (in Chinese)
[31] Hu X L, Zhao R X, Deng J G, Hu Y M and Song Q G 2018 Chin. Phys. B 27 037105
[32] Shao S Q, Zhou K Z and Zhang Z D 2019 Chin. Phys. B 28 070501
[33] Eriksson E, Strom A, Sharma G and Johannesson H 2012 Phys. Rev. B 86 161103(R)
[34] Cao J P, Yang W L, Shi K J and Wang Y P 2014 Nucl. Phys. B 886 185
[35] Korepin V E, Bogoliubov N M and Izergin A G 1993 Quantum inverse scattering method and correlation functions (Cambridge: Cambridge University Press) pp. 137–169
[36] Galleas W 2008 Nucl. Phys. B 790 524
[37] Takahashi M 1971 Prog. Thero. Phys. 46 401
[38] Shi L P and Xiong S J 2009 Chin. Phys. B 26 067103
[39] Furusaki A and Nagaosa N 1992 Phys. Rev. Lett. 69 3378
[1] Effects of built-in electric field and donor impurity on linear and nonlinear optical properties of wurtzite InxGa1-xN/GaN nanostructures
Xiao-Chen Yang(杨晓晨), Yan Xing(邢雁). Chin. Phys. B, 2020, 29(8): 087802.
[2] Experimental and computational study of visible light-induced photocatalytic ability of nitrogen ions-implanted TiO2 nanotubes
Ruijing Zhang(张瑞菁), Xiaoli Liu(刘晓丽), Xinggang Hou(侯兴刚), Bin Liao(廖斌). Chin. Phys. B, 2020, 29(4): 048501.
[3] Impurity-induced Shiba bound state in the BCS-BEC crossover regime of two-dimensional Fermi superfluid
Siqi Shao(邵思齐), Kezhao Zhou(周可召), Zhidong Zhang(张志东). Chin. Phys. B, 2019, 28(7): 070501.
[4] Controllable precision of the projective truncation approximation for Green's functions
Peng Fan(范鹏), Ning-Hua Tong(同宁华). Chin. Phys. B, 2019, 28(4): 047102.
[5] Semi-analytic study on the conductance of a lengthy armchair honeycomb nanoribbon including vacancies, defects, or impurities
Fateme Nadri, Mohammad Mardaani, Hassan Rabani. Chin. Phys. B, 2019, 28(1): 017202.
[6] Effect of nickel segregation on CuΣ9 grain boundary undergone shear deformations
Xiang-Yue Liu(刘湘月), Hong Zhang(张红), Xin-Lu Cheng(程新路). Chin. Phys. B, 2018, 27(6): 063103.
[7] Effect of P impurity on mechanical properties of NiAlΣ5 grain boundary: From perspectives of stress and energy
Xue-Lan Hu(胡雪兰), Ruo-Xi Zhao(赵若汐), Jiang-Ge Deng(邓江革), Yan-Min Hu(胡艳敏), Qing-Gong Song(宋庆功). Chin. Phys. B, 2018, 27(3): 037105.
[8] Electronic structures of impurities and point defects in semiconductors
Yong Zhang(张勇). Chin. Phys. B, 2018, 27(11): 117103.
[9] Synthesis of diamonds in Fe—C systems using nitrogen and hydrogen co-doped impurities under HPHT
Shi-Shuai Sun(孙士帅), Zhi-Hui Xu(徐智慧), Wen Cui(崔雯), Xiao-Peng Jia(贾晓鹏), Hong-An Ma(马红安). Chin. Phys. B, 2017, 26(9): 098101.
[10] Solvability of a class of PT-symmetric non-Hermitian Hamiltonians: Bethe ansatz method
M Baradaran, H Panahi. Chin. Phys. B, 2017, 26(6): 060301.
[11] Validation of the Wiedemann-Franz law in a granular s-wave superconductor in the nanometer scale
A Yousefvand, H Salehi, M Zargar Shoushtari. Chin. Phys. B, 2017, 26(3): 037401.
[12] Exact solutions of an Ising spin chain with a spin-1 impurity
Xuchu Huang(黄旭初). Chin. Phys. B, 2017, 26(3): 037501.
[13] Effect of P impurity on NiAlΣ5 grain boundary from first-principles study
Xue-Lan Hu(胡雪兰), Ruo-Xi Zhao(赵若汐), Yang Luo(罗阳), Qing-Gong Song(宋庆功). Chin. Phys. B, 2017, 26(2): 023101.
[14] Photoemission cross section: A critical parameter in the impurity photovoltaic effect
Jiren Yuan(袁吉仁), Haibin Huang(黄海宾), Xinhua Deng(邓新华), Zhihao Yue(岳之浩), Yuping He(何玉平), Naigen Zhou(周耐根), Lang Zhou(周浪). Chin. Phys. B, 2017, 26(1): 018503.
[15] First principle calculations of thermodynamic properties of pure graphene sheet and graphene sheets with Si, Ge, Fe, and Co impurities
A Kheyri, Z Nourbakhsh. Chin. Phys. B, 2016, 25(9): 093102.
No Suggested Reading articles found!