Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 064702    DOI: 10.1088/1674-1056/ab8624

Discharge and flow characterizations of the double-side sliding discharge plasma actuator

Qi-Kun He(贺启坤)1, Hua Liang(梁华)1, Bo-Rui Zheng(郑博睿)2
1 Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China;
2 School of Automation and Information, Xi'an University of Technology, Xi'an 710048, China
Abstract  We investigate the discharge and flow characterizations of a double-side siding discharge plasma actuator driven by different polarities of direct current (DC) voltage. The discharge tests show that sliding discharge and extended discharge are filamentary discharge. The irregular current pulse of sliding discharge fluctuates obviously in the first half cycle, ultimately expands the discharge channel. The instantaneous power and average power consumptions of sliding discharge are larger than those of the extended discharge and dielectric barrier discharge (DBD). The flow characteristics measured by a high-frequency particle-image-velocimetry system together with high-speed schlieren technology show that the opposite jet at the bias DC electrode is induced by sliding discharge, which causes a bulge structure in the discharge channel. The bias DC electrode can deflect the direction of the induced jet, then modifying the properties of the boundary layer. Extended discharge can accelerate the velocity of the starting vortex, improving the horizontal velocity profile by 203%. The momentum growth caused by extended discharge has the largest peak value and the fastest growth rate, compared with sliding discharge and DBD. However, the momentum growth of sliding discharge lasts longer in the whole pulsed cycle, indicating that sliding discharge can also inject more momentum.
Keywords:  plasma      double-side sliding discharge      induced velocity      induced vortex      momentum analysis  
Received:  30 December 2019      Revised:  14 March 2020      Published:  05 June 2020
PACS:  47.32.C- (Vortex dynamics)  
  47.65.Md (Plasma dynamos)  
  52.30.-q (Plasma dynamics and flow)  
  52.50.Nr (Plasma heating by DC fields; ohmic heating, arcs)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51607188, 51790511, and 51906254) and the Foundation for Key Laboratories of National Defense Science and Technology of China (Grant No. 614220202011801).
Corresponding Authors:  Hua Liang, Bo-Rui Zheng     E-mail:;

Cite this article: 

Qi-Kun He(贺启坤), Hua Liang(梁华), Bo-Rui Zheng(郑博睿) Discharge and flow characterizations of the double-side sliding discharge plasma actuator 2020 Chin. Phys. B 29 064702

[1] Corke T C, Enloe C L and Wilkinson S P 2010 Annu. Rev. Fliud Mech. 42 505
[2] Roth J R, Sherman D M and Wilkinson S P 1998 36th AIAA Aerospace Sciences Meeting and Exhibit, January 12-15, 1998, Reno, NV, USA p. 328
[3] Roth J R 2003 Phys. Plasmas 10 2117
[4] Moreau E, Léger L and Touchard G 2006 J. Electrostat. 64 215
[5] Roupassov D V, Nikipelov A A, Nudnova M M and Starikovskii A Y 2009 AIAA J. 47 168
[6] Chen K and Liang H 2016 Chin. Phys. B 25 024703
[7] Huang J, Corke T C, Thomas F O and Thomas F O 2006 AIAA J. 44 51
[8] He C, Corke T C and Patel M P 2009 J. Aircraft 46 864
[9] Patel M P, Ng T T, Vasudevan S, Corke T C and He C 2007 J. Aircraft 44 1264
[10] Little J, Nishihara M, Adamovich I and Samimy M 2010 Exp. Fluids 48 521
[11] Wei B, Wu Y, Liang H, Zhu Y F, Chen J, Zhao G Y, Song H M, Jia M and Xu H J 2019 Int. J. Heat Mass Transfer 138 163
[12] Pavon S, Dorier J L, Hollenstein C, Ott P and Leyland P 2007 J. Phys. D: Appl. Phys. 40 1733
[13] Shen L, Wen C Y and Chen H A 2016 AIAA J. 54 652
[14] Pons J, Moreau E and Touchard G 2005 J. Phys. D: Appl. Phys. J. 38 3635
[15] Moreau E, Sosa R and Artana G 2008 J. Phys. D: Appl. Phys. 41 115204
[16] Zheng B R, Xue M, Ke X Z, Ge C, Wang Y S, Liu F and Luo S J 2019 AIAA J. 57 467
[17] Seney S, Huffman R, Bailey W, Liu D, Reeder M and Stults J 2011 42nd AIAA Plasmadynamics and Lasers Conference in Conjunction with the 18th International Conference on MHD Energy Conversion (ICMHD) June 27-30, 2011, Honolulu, Hawaii, USA, p. 3732
[18] Moreau E, Louste C and Touchard G 2008 J. Electrostat. 66 107
[19] Benard N and Moreau E 2014 Exp. Fluids 55 1846
[20] Steven D S, Richard E H, William B, Liu D, Reeder M F and Stults J 2016 AIAA J. 54 10
[21] Zheng B R, Xue M and Ge C 2020 Chin. Phys. B 29 064703
[22] Louste C, Artana G, Moreau E and Touchard G 2005 J. Electrostat. 63 615
[23] Moreau E, Sosa R and Artana G 2008 J. Phys. D: Appl. Phys. 41 115
[24] Guo S, Simon T, Ernie D and Kortshagen U 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, January 4-7, 2010, Orlando, Florida, USA, p 1090
[25] Zheng B R, Ke X Z, Ge C, Zhu Y F, Wu Y, Liu F and Luo S J 2020 AIAA J. 58 733
[26] Pang L, He K, Zhang Q G and Liu C L 2016 Phys. Plasmas 23 053513
[27] Pang L, He K and Zhang Q G 2016 J. Appl. Phys. 120 103302
[28] Bayoda K D, Benard N and Moreau E 2015 J. Appl. Phys. 118 063301
[29] Kong F, Wang Y, Zhang C, Che X K, Yan P and Shao T 2017 Phys. Plasmas 24 123503
[30] Zhang C, Huang B D, Luo Z B, Che X K, Yan P and Shao T 2019 Plasma Sources Sci. Technol. 28 064001
[31] Fang Z, Qiu Y, Zhang C and Kuffel E 2007 J. Phys. D: Appl. Phys. 40 1401
[32] Soloviev V R and Krivtsov V M 2009 J. Phys. D: Appl. Phys. 42 125208
[33] Xie X Q, Fang Z, Yang H, Qiu Z, Zhao L Z and Qiu Y C 2009 Chin. J. Vac. Sci. Technol. 29 649 (in Chinese)
[34] Jiang X 2017 Characteristics and Application Research on a Sliding Discharge Plasma Actuator (MS thesis) (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)
[35] Zheng B R, Xue M and Ge C 2020 Chin. Phys. B 29 024704
[36] Soloviev V R 2012 J. Phys. D: Appl. Phys. 45 025205
[37] Nishida H, Nakai K and Matsuno T 2017 AIAA J. 55 1852
[38] Nakai K, Hasegawa D, Hatamoto A and Nishida H 2019 AIAA Scitech Forum, January 7-11, 2019, San Diego, California, USA, p. 0737
[39] Jukes T N and Choi K S 2009 Phys. Fluids 21 094106
[1] Analysis of asymmetry of the Dα emission spectra under the Zeeman effect in boundary region for D-D experiment on EAST tokamak
Wei Gao(高伟), Juan Huang(黄娟), Jianxun Su(宿建勋), Jing Fu(付静), Yingjie Chen(陈颖杰), Wei Gao(高伟), Zhenwei Wu(吴振伟), and EAST Team. Chin. Phys. B, 2021, 30(2): 025201.
[2] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[3] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[4] Effect of radio frequency bias on plasma characteristics of inductively coupled argon discharge based on fluid simulations
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Sen Chai(柴森), You-Nian Wang(王友年), Yan-Yan Chu(楚艳艳), Jian-Xin He(何建新). Chin. Phys. B, 2020, 29(9): 095203.
[5] Gaussian process tomography based on Bayesian data analysis for soft x-ray and AXUV diagnostics on EAST
Yan Chao(晁燕), Liqing Xu(徐立清), Liqun Hu(胡立群), Yanmin Duan(段艳敏), Tianbo Wang(王天博), Yi Yuan(原毅), Yongkuan Zhang(张永宽). Chin. Phys. B, 2020, 29(9): 095201.
[6] Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel
Yong-Nan Hu(胡永南), Li-Hong Cheng(成丽红), Zheng-Wei Yao(姚征伟), Xiao-Bo Zhang(张小波), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(8): 084103.
[7] Effects of microwave oxygen plasma treatments on microstructure and Ge-V photoluminescent properties of diamond particles
Ling-Xiao Sheng(盛凌霄), Cheng-Ke Chen(陈成克), Mei-Yan Jiang(蒋梅燕), Xiao Li(李晓), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(8): 088101.
[8] Electrical modeling of dielectric barrier discharge considering surface charge on the plasma modified material
Hong-Lu Guan(关弘路), Xiang-Rong Chen(陈向荣), Tie Jiang(江铁), Hao Du(杜浩), Ashish Paramane, Hao Zhou(周浩). Chin. Phys. B, 2020, 29(7): 075204.
[9] Analysis of extreme ultraviolet spectra of laser-produced Cd plasmas
Mohammedelnazier Bakhiet, Maogen Su(苏茂根), Shiquan Cao(曹世权), Qi Min(敏琦), Duixiong Sun(孙对兄), Siqi He(何思奇), Lei Wu(吴磊), Chenzhong Dong(董晨钟). Chin. Phys. B, 2020, 29(7): 075203.
[10] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[11] Oblique collisional effects of dust acoustic waves in unmagnetized dusty plasma
M S Alam, M R Talukder. Chin. Phys. B, 2020, 29(6): 065202.
[12] Interaction of supersonic molecular beam with low-temperature plasma
Dong Liu(刘东), Guo-Feng Qu(曲国峰), Zhan-Hui Wang(王占辉), Hua-Jie Wang(王华杰), Hao Liu(刘灏), Yi-Zhou Wang(王艺舟), Zi-Xu Xu(徐子虚), Min Li(李敏), Chao-Wen Yang(杨朝文), Xing-Quan Liu(刘星泉), Wei-Ping Lin(林炜平), Min Yan(颜敏), Yu Huang(黄宇), Yu-Xuan Zhu(朱宇轩), Min Xu(许敏), Ji-Feng Han(韩纪锋). Chin. Phys. B, 2020, 29(6): 065208.
[13] Simulation of helium supersonic molecular beam injection in tokamak plasma
Xue-Ke Wu(吴雪科), Zhan-Hui Wang(王占辉), Hui-Dong Li(李会东), Li-Ming Shi(石黎铭), Di Wan(万迪), Qun-Chao Fan(樊群超), Min Xu(许敏). Chin. Phys. B, 2020, 29(6): 065201.
[14] Tests of the real-time vertical growth rate calculation on EAST
Na-Na Bao(鲍娜娜), Yao Huang(黄耀), Jayson Barr, Zheng-Ping Luo(罗正平), Yue-Hang Wang(汪悦航), Shu-Liang Chen(陈树亮), Bing-Jia Xiao(肖炳甲), David Humphreys. Chin. Phys. B, 2020, 29(6): 065204.
[15] Determination of activation energy of ion-implanted deuterium release from W-Y2O3
Xue-Feng Wang(王雪峰), Ji-Liang Wu(吴吉良), Qiang Li(李强), Rui-Zhu Yang(杨蕊竹), Zhan-Lei Wang(王占雷), Chang-An Chen(陈长安), Chun-Rong Feng(冯春蓉), Yong-Chu Rao(饶咏初), Xiao-Hong Chen(谌晓洪), Xiao-Qiu Ye(叶小球). Chin. Phys. B, 2020, 29(6): 065205.
No Suggested Reading articles found!