Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 064702    DOI: 10.1088/1674-1056/ab8624
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Discharge and flow characterizations of the double-side sliding discharge plasma actuator

Qi-Kun He(贺启坤)1, Hua Liang(梁华)1, Bo-Rui Zheng(郑博睿)2
1 Science and Technology on Plasma Dynamics Laboratory, Air Force Engineering University, Xi'an 710038, China;
2 School of Automation and Information, Xi'an University of Technology, Xi'an 710048, China
Abstract  We investigate the discharge and flow characterizations of a double-side siding discharge plasma actuator driven by different polarities of direct current (DC) voltage. The discharge tests show that sliding discharge and extended discharge are filamentary discharge. The irregular current pulse of sliding discharge fluctuates obviously in the first half cycle, ultimately expands the discharge channel. The instantaneous power and average power consumptions of sliding discharge are larger than those of the extended discharge and dielectric barrier discharge (DBD). The flow characteristics measured by a high-frequency particle-image-velocimetry system together with high-speed schlieren technology show that the opposite jet at the bias DC electrode is induced by sliding discharge, which causes a bulge structure in the discharge channel. The bias DC electrode can deflect the direction of the induced jet, then modifying the properties of the boundary layer. Extended discharge can accelerate the velocity of the starting vortex, improving the horizontal velocity profile by 203%. The momentum growth caused by extended discharge has the largest peak value and the fastest growth rate, compared with sliding discharge and DBD. However, the momentum growth of sliding discharge lasts longer in the whole pulsed cycle, indicating that sliding discharge can also inject more momentum.
Keywords:  plasma      double-side sliding discharge      induced velocity      induced vortex      momentum analysis  
Received:  30 December 2019      Revised:  14 March 2020      Accepted manuscript online: 
PACS:  47.32.C- (Vortex dynamics)  
  47.65.Md (Plasma dynamos)  
  52.30.-q (Plasma dynamics and flow)  
  52.50.Nr (Plasma heating by DC fields; ohmic heating, arcs)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51607188, 51790511, and 51906254) and the Foundation for Key Laboratories of National Defense Science and Technology of China (Grant No. 614220202011801).
Corresponding Authors:  Hua Liang, Bo-Rui Zheng     E-mail:  lianghua82702@126.com;narcker@163.com

Cite this article: 

Qi-Kun He(贺启坤), Hua Liang(梁华), Bo-Rui Zheng(郑博睿) Discharge and flow characterizations of the double-side sliding discharge plasma actuator 2020 Chin. Phys. B 29 064702

[1] Corke T C, Enloe C L and Wilkinson S P 2010 Annu. Rev. Fliud Mech. 42 505
[2] Roth J R, Sherman D M and Wilkinson S P 1998 36th AIAA Aerospace Sciences Meeting and Exhibit, January 12-15, 1998, Reno, NV, USA p. 328
[3] Roth J R 2003 Phys. Plasmas 10 2117
[4] Moreau E, Léger L and Touchard G 2006 J. Electrostat. 64 215
[5] Roupassov D V, Nikipelov A A, Nudnova M M and Starikovskii A Y 2009 AIAA J. 47 168
[6] Chen K and Liang H 2016 Chin. Phys. B 25 024703
[7] Huang J, Corke T C, Thomas F O and Thomas F O 2006 AIAA J. 44 51
[8] He C, Corke T C and Patel M P 2009 J. Aircraft 46 864
[9] Patel M P, Ng T T, Vasudevan S, Corke T C and He C 2007 J. Aircraft 44 1264
[10] Little J, Nishihara M, Adamovich I and Samimy M 2010 Exp. Fluids 48 521
[11] Wei B, Wu Y, Liang H, Zhu Y F, Chen J, Zhao G Y, Song H M, Jia M and Xu H J 2019 Int. J. Heat Mass Transfer 138 163
[12] Pavon S, Dorier J L, Hollenstein C, Ott P and Leyland P 2007 J. Phys. D: Appl. Phys. 40 1733
[13] Shen L, Wen C Y and Chen H A 2016 AIAA J. 54 652
[14] Pons J, Moreau E and Touchard G 2005 J. Phys. D: Appl. Phys. J. 38 3635
[15] Moreau E, Sosa R and Artana G 2008 J. Phys. D: Appl. Phys. 41 115204
[16] Zheng B R, Xue M, Ke X Z, Ge C, Wang Y S, Liu F and Luo S J 2019 AIAA J. 57 467
[17] Seney S, Huffman R, Bailey W, Liu D, Reeder M and Stults J 2011 42nd AIAA Plasmadynamics and Lasers Conference in Conjunction with the 18th International Conference on MHD Energy Conversion (ICMHD) June 27-30, 2011, Honolulu, Hawaii, USA, p. 3732
[18] Moreau E, Louste C and Touchard G 2008 J. Electrostat. 66 107
[19] Benard N and Moreau E 2014 Exp. Fluids 55 1846
[20] Steven D S, Richard E H, William B, Liu D, Reeder M F and Stults J 2016 AIAA J. 54 10
[21] Zheng B R, Xue M and Ge C 2020 Chin. Phys. B 29 064703
[22] Louste C, Artana G, Moreau E and Touchard G 2005 J. Electrostat. 63 615
[23] Moreau E, Sosa R and Artana G 2008 J. Phys. D: Appl. Phys. 41 115
[24] Guo S, Simon T, Ernie D and Kortshagen U 2010 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, January 4-7, 2010, Orlando, Florida, USA, p 1090
[25] Zheng B R, Ke X Z, Ge C, Zhu Y F, Wu Y, Liu F and Luo S J 2020 AIAA J. 58 733
[26] Pang L, He K, Zhang Q G and Liu C L 2016 Phys. Plasmas 23 053513
[27] Pang L, He K and Zhang Q G 2016 J. Appl. Phys. 120 103302
[28] Bayoda K D, Benard N and Moreau E 2015 J. Appl. Phys. 118 063301
[29] Kong F, Wang Y, Zhang C, Che X K, Yan P and Shao T 2017 Phys. Plasmas 24 123503
[30] Zhang C, Huang B D, Luo Z B, Che X K, Yan P and Shao T 2019 Plasma Sources Sci. Technol. 28 064001
[31] Fang Z, Qiu Y, Zhang C and Kuffel E 2007 J. Phys. D: Appl. Phys. 40 1401
[32] Soloviev V R and Krivtsov V M 2009 J. Phys. D: Appl. Phys. 42 125208
[33] Xie X Q, Fang Z, Yang H, Qiu Z, Zhao L Z and Qiu Y C 2009 Chin. J. Vac. Sci. Technol. 29 649 (in Chinese)
[34] Jiang X 2017 Characteristics and Application Research on a Sliding Discharge Plasma Actuator (MS thesis) (Nanjing: Nanjing University of Aeronautics and Astronautics) (in Chinese)
[35] Zheng B R, Xue M and Ge C 2020 Chin. Phys. B 29 024704
[36] Soloviev V R 2012 J. Phys. D: Appl. Phys. 45 025205
[37] Nishida H, Nakai K and Matsuno T 2017 AIAA J. 55 1852
[38] Nakai K, Hasegawa D, Hatamoto A and Nishida H 2019 AIAA Scitech Forum, January 7-11, 2019, San Diego, California, USA, p. 0737
[39] Jukes T N and Choi K S 2009 Phys. Fluids 21 094106
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[3] Correction of intense laser-plasma interactions by QED vacuum polarization in collision of laser beams
Wen-Bo Chen(陈文博) and Zhi-Gang Bu(步志刚). Chin. Phys. B, 2023, 32(2): 025204.
[4] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[5] Combination of spark discharge and nanoparticle-enhanced laser-induced plasma spectroscopy
Qing-Xue Li(李庆雪), Dan Zhang(张丹), Yuan-Fei Jiang(姜远飞), Su-Yu Li(李苏宇), An-Min Chen(陈安民), and Ming-Xing Jin(金明星). Chin. Phys. B, 2022, 31(8): 085201.
[6] Radiation effects of electrons on multilayer FePS3 studied with laser plasma accelerator
Meng Peng(彭猛), Jun-Bo Yang(杨俊波), Hao Chen(陈浩), Bo-Yuan Li(李博源), Xu-Lei Ge(葛绪雷), Xiao-Hu Yang(杨晓虎), Guo-Bo Zhang(张国博), and Yan-Yun Ma(马燕云). Chin. Phys. B, 2022, 31(8): 086102.
[7] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[8] Fundamental study towards a better understanding of low pressure radio-frequency plasmas for industrial applications
Yong-Xin Liu(刘永新), Quan-Zhi Zhang(张权治), Kai Zhao(赵凯), Yu-Ru Zhang(张钰如), Fei Gao(高飞),Yuan-Hong Song(宋远红), and You-Nian Wang(王友年). Chin. Phys. B, 2022, 31(8): 085202.
[9] Interaction between plasma and electromagnetic field in ion source of 10 cm ECR ion thruster
Hao Mou(牟浩), Yi-Zhou Jin(金逸舟), Juan Yang(杨涓), Xu Xia(夏旭), and Yu-Liang Fu(付瑜亮). Chin. Phys. B, 2022, 31(7): 075202.
[10] Plasma-wave interaction in helicon plasmas near the lower hybrid frequency
Yide Zhao(赵以德), Jinwei Bai(白进纬), Yong Cao(曹勇), Siyu Wu(吴思宇), Eduardo Ahedo, Mario Merino, and Bin Tian(田滨). Chin. Phys. B, 2022, 31(7): 075203.
[11] A nonlinear wave coupling algorithm and its programing and application in plasma turbulences
Yong Shen(沈勇), Yu-Hang Shen(沈煜航), Jia-Qi Dong(董家齐), Kai-Jun Zhao(赵开君), Zhong-Bing Shi(石中兵), and Ji-Quan Li(李继全). Chin. Phys. B, 2022, 31(6): 065206.
[12] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[13] Quantitative simulations of ratchet potential in a dusty plasma ratchet
Shuo Wang(王硕), Ning Zhang(张宁), Shun-Xin Zhang(张顺欣), Miao Tian(田淼), Ya-Wen Cai(蔡雅文), Wei-Li Fan(范伟丽), Fu-Cheng Liu(刘富成), and Ya-Feng He(贺亚峰). Chin. Phys. B, 2022, 31(6): 065202.
[14] Influence of water environment on paint removal and the selection criteria of laser parameters
Li-Jun Zhang(张丽君), Kai-Nan Zhou(周凯南), Guo-Ying Feng(冯国英), Jing-Hua Han(韩敬华),Na Xie(谢娜), and Jing Xiao(肖婧). Chin. Phys. B, 2022, 31(6): 064205.
[15] Influence of oxygen addition on the discharge characteristics of an argon plasma jet at atmospheric pressure
Junyu Chen(陈俊宇), Na Zhao(赵娜), Jiacun Wu(武珈存), Kaiyue Wu(吴凯玥), Furong Zhang(张芙蓉),Junxia Ran(冉俊霞), Pengying Jia(贾鹏英), Xuexia Pang(庞学霞), and Xuechen Li(李雪辰). Chin. Phys. B, 2022, 31(6): 065205.
No Suggested Reading articles found!