Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 066101    DOI: 10.1088/1674-1056/ab84dd
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread

Zhenzhen Miao(苗珍珍)1, Can Cao(曹粲)2, Bei Zhang(张蓓)1, Haiming Duan(段海明)1, Mengqiu Long(龙孟秋)1,2
1 Institute of Low-dimensional Quantum Materials and Devices, School of Physics Science and Technology, Xinjiang University, Urumqi 830046, China;
2 Hunan Key Laboratory of Super Micro-structure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China
Abstract  The diamond nanothread (DNT), a new one-dimensional (1D) full carbon sp3 structure that has been successfully synthesized recently, has attracted widespread attention in the carbon community. By using the first-principles calculation method of density functional theory (DFT), we have studied the effects of 3d transition metal (TM) atomic doping on the electronic and magnetic properties of DNT. The results show that the spin-polarized semiconductor characteristics are achieved by doping Sc, V, Cr, Mn, and Co atoms in the DNT system. The magnetic moment ranges from 1.00 μB to 3.00 μB and the band gap value is from 0.35 eV to 2.54 eV. The Fe-doped DNT system exhibits spin-metallic state with a magnetic moment of 2.58 μB, while the Ti and Ni-doped DNT systems are nonmagnetic semiconductors. These results indicate that the 3d TM atoms doping can modulate the electronic and magnetic properties of 1D-DNT effectively, and the TM-doped DNT systems have potential applications in the fields of electronics, optoelectronics, and spintronics.
Keywords:  diamond nanothread      transition metal atom      doping      electronic and magnetic property  
Received:  27 February 2020      Revised:  26 March 2020      Published:  05 June 2020
PACS:  61.46.-w (Structure of nanoscale materials)  
  62.23.Hj (Nanowires)  
  71.20.-b (Electron density of states and band structure of crystalline solids)  
  75.75.-c (Magnetic properties of nanostructures)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 21673296 and 11664038) and the Natural Science Foundation of Xinjiang Uygur Autonomous Region of China (Grant No. 2019D01C038).
Corresponding Authors:  Haiming Duan, Mengqiu Long     E-mail:  dhm@xju.edu.cn;mqlong@csu.edu.cn

Cite this article: 

Zhenzhen Miao(苗珍珍), Can Cao(曹粲), Bei Zhang(张蓓), Haiming Duan(段海明), Mengqiu Long(龙孟秋) Effects of 3d-transition metal doping on the electronic and magnetic properties of one-dimensional diamond nanothread 2020 Chin. Phys. B 29 066101

[1] Liu J, Rinzler A G, Dai H, Hafuer J H, Bradley R K, Boul P J, Lu A, Iverson T, Shelimov K, Huffman C B, Rodriguez-Macias F, Shon Y S, Lee T R, Colbert D T and Smally R E 1998 Science 280 1253
[2] Kroto H W, Heath J R, O'Brien S C, Curl R F and Smalley R E 1985 Nature 318 162
[3] Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F and Yan H 2003 Adv. Mater. 15 353
[4] Zhang D, Long M Q, Zhang X, Ouyang F, Li M and Xu H 2015 J. Appl. Phys. 117 014311
[5] Zhang H 2015 ACS Nano 9 9451
[6] Peng D D, Zhang X J, Li X B, Wu D and Long M Q 2018 J. Appl. Phys. 124 184303
[7] Long M Q, Tang L, Wang D, Li Y L and Shuai Z 2011 ACS Nano 5 2593
[8] Fitzgibbons T C, Guthrie M, Xu E S, Crespi V H, Davidowski S K, Cody G D, Alem N and Badding J V 2015 Nat. Mater. 14 43
[9] Stojkovic D, Zhang P and Crespi V H 2001 Phys. Rev. Lett. 87 125502
[10] Wu W, Bo T, Shan G, Yang S A and Gang Z 2018 J. Phys. Chem. C 122 3101
[11] Silveira J F R V and Muuiz A R 2017 Carbon 113 260
[12] Feng C, Xu J, Zhang Z and Wu J 2017 Carbon 124 9
[13] Xiao J, Chen M M, Liu W J, He J, Pan C N and Long M Q 2019 Physica E 111 37
[14] Podlivaev A I and Openov L A 2017 Semiconductors 51 636
[15] Openov L A and Podlivaev A I 2016 JETP Lett. 104 193
[16] Zhan H, Gang Z, Zhang Y, Tan V B C, Bell J M and Gu Y 2016 Carbon 98 232
[17] Zhan H, Gang Z, Bell J M and Gu Y 2016 Carbon 107 304
[18] Zhu T and Ertekin E 2016 Nano Lett. 16 4763
[19] Zhao J, Buldum A, Han J and Ping L J 2000 Phys. Rev. Lett. 85 1706
[20] Jing L and Nagase S 2004 Phys. Rev. B 69 205304
[21] Jo C, Kim C and Lee Y H 2002 Phys. Rev. B 65 035420
[22] Mirzaei M and Nouri A 2010 J. Mol. Struct. Theochem. 942 83
[23] Dong Q, Li X M, Tian W Q, Huang X R and Sun C C 2010 J. Mol. Struct. Theochem. 948 83
[24] Durgun E, Jang Y R and Ciraci S 2007 Phys. Rev. B 76 73413
[25] Yao K L, Min Y, Zhu S C, Gao G Y, Liu Z L and Cheng H G 2008 Phys. Lett. A 372 5609
[26] Li Y F, Zhou Z, Shen P W and Chen Z F 2009 ACS Nano 3 1952
[27] Shan S Y, Wei T Z and Jiang Q 2010 IEEE T. Nanotechnol. 9 78
[28] He K H, Zhang G, Chen G, Wan M and Ji G F 2008 Physica B 403 4213
[29] Li X M, Wei Q T, Qi D, Huang X R, Sun C C and Lei J 2011 Comput. Theor. Chem. 964 199
[30] Yang G, Xu S, Wei Z, Ma T and Wu C 2016 Phys. Rev. B 94 075104
[31] Jiang J, Wang X and Yan S 2018 Comput. Mater. Sci. 153 10
[32] Luo Y, Ren C, Wang S, Li S, Zhang P, Yu J, Sun M, Sun Z and Tang W 2018 Nanoscale Res. Lett. 13 282
[33] Babar R and Kabir M 2016 J. Phys. Chem. C 120 14991
[34] Yu W, Zhu Z, Niu C Y, Li C J Cho H and Jia Y 2016 Nanoscale Res. Lett. 11 77
[35] Andriotis A N and Menon M 2014 Phys. Rev. B 90 125304
[36] Li Y J, Li S L, Gong P, Li Y L, Fang X Y, Jia Y H and Cao M S 2018 Physica E 104 247
[37] Lia Y H, Gong P, Li S L, Ma W H, Fang X Y, Yang Y Y and Cao M S 2020 Phys. Lett. A 384 126106
[38] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[39] Kresse G 1995 J. Non-Cryst. Solids 192-193 222
[40] Kresse G and Furthmülle J 1996 Phys. Rev. B 54 11169
[41] Sun M L, Slanina Z and Lee S L 1995 Chem. Phys. Lett. 233 279
[42] Li Y L, Gong P and Fang X Y 2020 Chin. Phys. B 29 037304
[43] Ma Y, Lehtinen P O, Foster A S and Nieminen R M 2004 New J. Phys. 6 68
[44] Stern R, Dongre B and Madsen G K H 2016 Nanotechnology 27 334002
[1] Enhanced spin-orbit torque efficiency in Pt100-xNix alloy based magnetic bilayer
Congli He(何聪丽), Qingqiang Chen(陈庆强), Shipeng Shen(申世鹏), Jinwu Wei(魏晋武), Hongjun Xu(许洪军), Yunchi Zhao(赵云驰), Guoqiang Yu(于国强), and Shouguo Wang(王守国). Chin. Phys. B, 2021, 30(3): 037503.
[2] Sr-doping effects on conductivity, charge transport, and ferroelectricity of Ba0.7La0.3TiO3 epitaxial thin films
Qiang Li(李强), Dao Wang(王岛), Yan Zhang(张岩), Yu-Shan Li(李育珊), Ai-Hua Zhang(张爱华), Rui-Qiang Tao(陶瑞强), Zhen Fan(樊贞), Min Zeng(曾敏), Guo-Fu Zhou(周国富), Xu-Bing Lu(陆旭兵), and Jun-Ming Liu(刘俊明). Chin. Phys. B, 2021, 30(2): 027701.
[3] Doping effects of transition metals on the superconductivity of (Li,Fe)OHFeSe films
Dong Li(李栋), Peipei Shen(沈沛沛), Sheng Ma(马晟), Zhongxu Wei(魏忠旭), Jie Yuan(袁洁), Kui Jin(金魁), Li Yu(俞理), Fang Zhou(周放), Xiaoli Dong(董晓莉), and Zhongxian Zhao(赵忠贤). Chin. Phys. B, 2021, 30(1): 017402.
[4] Physical properties and phase diagram of NaFe1 -xVxAs
Guang-Yang Dai(代光阳), Xin He(何鑫), Zhi-Wen Li(李芷文), Chang-Ling Zhang(张昌玲), Lu-Chuan Shi(史鲁川), Run-Ze Yu(于润泽), Xian-Cheng Wang(望贤成), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(1): 017401.
[5] High efficiency sub-nanosecond electro-optical Q-switched laser operating at kilohertz repetition frequency
Xin Zhao(赵鑫), Zheng Song(宋政), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2020, 29(8): 084205.
[6] Highly efficient bifacial semitransparent perovskite solar cells based on molecular doping of CuSCN hole transport layer
Shixin Hou(侯世欣), Biao Shi(石标), Pengyang Wang(王鹏阳), Yucheng Li(李玉成), Jie Zhang(张杰), Peirun Chen(陈沛润), Bingbing Chen(陈兵兵), Fuhua Hou(侯福华), Qian Huang(黄茜), Yi Ding(丁毅), Yuelong Li(李跃龙), Dekun Zhang(张德坤), Shengzhi Xu(许盛之), Ying Zhao(赵颖), Xiaodan Zhang(张晓丹). Chin. Phys. B, 2020, 29(7): 078801.
[7] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[8] Mg acceptor activation mechanism and hole transport characteristics in highly Mg-doped AlGaN alloys
Qing-Jun Xu(徐庆君), Shi-Ying Zhang(张士英), Bin Liu(刘斌), Zhen-Hua Li(李振华), Tao Tao(陶涛), Zi-Li Xie(谢自力), Xiang-Qian Xiu(修向前), Dun-Jun Chen(陈敦军), Peng Chen(陈鹏), Ping Han(韩平), Ke Wang(王科), Rong Zhang(张荣), You-Liao Zheng(郑有炓). Chin. Phys. B, 2020, 29(5): 058103.
[9] Improved carrier transport in Mn:ZnSe quantum dots sensitized La-doped nano-TiO2 thin film
Shao Li(李绍), Gang Li(李刚), Li-Shuang Yang(杨丽爽), Kui-Ying Li(李葵英). Chin. Phys. B, 2020, 29(4): 046104.
[10] Investigation of active-region doping on InAs/GaSb long wave infrared detectors
Su-Ning Cui(崔素宁), Dong-Wei Jiang(蒋洞微), Ju Sun(孙矩), Qing-Xuan Jia(贾庆轩), Nong Li(李农), Xuan Zhang(张璇), Yong Li(李勇), Fa-Ran Chang(常发冉), Guo-Wei Wang(王国伟), Ying-Qiang Xu(徐应强), Zhi-Chuan Niu(牛智川). Chin. Phys. B, 2020, 29(4): 048502.
[11] Growth and doping of bulk GaN by hydride vapor phase epitaxy
Yu-Min Zhang(张育民), Jian-Feng Wang(王建峰), De-Min Cai(蔡德敏), Guo-Qiang Ren(任国强), Yu Xu(徐俞), Ming-Yue Wang(王明月), Xiao-Jian Hu(胡晓剑), Ke Xu(徐科). Chin. Phys. B, 2020, 29(2): 026104.
[12] Improved water oxidation via Fe doping of CuWO4 photoanodes: Influence of the Fe source and concentration
Yue Sun(孙岳), Fenqi Du(杜粉琦), Donghang Xie(谢东航), Dongmei Yang(杨冬梅), Yang Jiao(焦阳), Lichao Jia(贾丽超), and Haibo Fan(范海波). Chin. Phys. B, 2020, 29(12): 127801.
[13] Electronic structure and optical properties of Ge-and F-doped α -Ga2O3: First-principles investigations
Ti-Kang Shu(束体康), Rui-Xia Miao(苗瑞霞), San-Dong Guo(郭三栋), Shao-Qing Wang(王少青), Chen-He Zhao(赵晨鹤), and Xue-Lan Zhang(张雪兰). Chin. Phys. B, 2020, 29(12): 126301.
[14] Thermal stability and thermoelectric properties of Cd-doped nano-layered Cu2Se prepared using NaCl flux method
Jianhua Lu(陆建华), Decong Li(李德聪), Wenting Liu(刘文婷), Lanxian Shen(申兰先), Jiali Chen(陈家莉), Wen Ge(葛文), and Shukang Deng(邓书康). Chin. Phys. B, 2020, 29(12): 127403.
[15] Influence of transition metals (Sc, Ti, V, Cr, and Mn) doping on magnetism of CdS
Zhongqiang Suo(索忠强), Jianfeng Dai(戴剑锋), Shanshan Gao(高姗姗), and Haoran Gao(高浩然)$. Chin. Phys. B, 2020, 29(11): 117502.
No Suggested Reading articles found!