Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 066201    DOI: 10.1088/1674-1056/ab84d5
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys

Jia-Yi Wang(王佳怡)1,2, Hai-Yang Song(宋海洋)1, Min-Rong An(安敏荣)1, Qiong Deng(邓琼)2, Yu-Long Li(李玉龙)2
1 College of Material Science and Engineering, Xi'an Shiyou University, Xi'an 710065, China;
2 School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  The dual-phase amorphous/crystalline nanostructured model proves to be an effective method to improve the plasticity of Mg alloys. The purpose of this paper is to explore an approach to improving the ductility and strength of Mg alloys at the same time. Here, the effect of amorphous phase strength, crystalline phase strength, and amorphous boundary (AB) spacing on the mechanical properties of dual-phase Mg alloys (DPMAs) under tensile loading are investigated by the molecular dynamics simulation method. The results confirm that the strength of DPMA can be significantly improved while its excellent plasticity is maintained by adjusting the strength of the amorphous phase or crystalline phase and optimizing the AB spacing. For the DPMA, when the amorphous phase (or crystalline phase) is strengthened to enhance its strength, the AB spacing should be increased (or reduced) to obtain superior plasticity at the same time. The results also indicate that the DPMA containing high strength amorphous phase exhibits three different deformation modes during plastic deformation with the increase of AB spacing. The research results will present a theoretical basis and early guidance for designing and developing the high-performance dual-phase hexagonal close-packed nanostructured metals.
Keywords:  dual-phase Mg alloy      metallic glass      mechanical property      molecular dynamics simulation  
Received:  02 February 2020      Revised:  29 March 2020      Published:  05 June 2020
PACS:  62.25.-g (Mechanical properties of nanoscale systems)  
  64.70.pe (Metallic glasses)  
  61.82.Bg (Metals and alloys)  
  31.15.xv (Molecular dynamics and other numerical methods)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11572259), the Natural Science Foundation of Shaanxi Province, China (Grant Nos. 2018JM101 and 2019JQ-827), and the Program for Graduate Innovation Fund of Xi'an Shiyou University, China (Grant No. YCS19111004).
Corresponding Authors:  Hai-Yang Song, Yu-Long Li     E-mail:  gsfshy@sohu.com;liyulong@nwpu.edu.cn

Cite this article: 

Jia-Yi Wang(王佳怡), Hai-Yang Song(宋海洋), Min-Rong An(安敏荣), Qiong Deng(邓琼), Yu-Long Li(李玉龙) Balancing strength and plasticity of dual-phase amorphous/crystalline nanostructured Mg alloys 2020 Chin. Phys. B 29 066201

[1] Wang Y, Chen M, Zhou F and M E 2002 Nature 419 912
[2] Liao M, Li B and Horstemeyer M F 2013 Comput. Mater. Sci. 79 534
[3] Gliiter H, Schimmel T and Hahn H 2014 Nano Today 9 17
[4] Hao L H, Liu Q, Fang Y Y, Huang M, Li W, Lu Y, Luo J F, Guan P F, Zhang Z, Wang L H and Han X D 2019 Comput. Mater. Sci. 169 109087
[5] Li X and Lu K 2019 Science 364 733
[6] Rajulapati K, Scattergood R, Murty K, Duscher G and Koch C 2006 Scr. Mater. 55 155
[7] Song H Y, Wang M, Deng Q and Li Y L 2018 J. Non-Cryst. Solids 490 13
[8] Lu B K and Wang C Y 2018 Chin. Phys. B 27 077104
[9] An M R, Song H Y and Su J F 2012 Chin. Phys. B 21 106202
[10] Song H Y and Li Y L 2016 Chin. Phys. B 25 026802
[11] Chang L, Zhou C Y, Li J and He X H 2018 Comput. Mater. Sci. 142 135
[12] Li G M, Wang Y B, Xiang M Z, Liao Y, Wang K and Chen J 2018 Int. J. Mech. Sci. 141 143
[13] Alaneme K K and Okotete E A 2017 J. Magnes. Alloy 5 460
[14] Silva C J, Kula A, Mishra R K and Niewczas M 2018 J. Alloys Compd. 761 58
[15] Tang L, Liu W, Ding Z, Zhang D, Zhao Y, Lavernia E J and Zhu Y 2016 Comput. Mater. Sci. 115 85
[16] Qiao J C, Wang Q, Crespo D, Yang Y and Pelletier J M 2017 Chin. Phys. B 26 016402
[17] Tang C and Wong C H 2015 Intermetallics 58 50
[18] Jiang S Q, Huang Y and Li M Z 2019 Chin. Phys. B 28 046103
[19] Volkert C A, Donohue A and Spaepen F 2008 J. Appl. Phys. 103 083539
[20] Zhao P, Li J and Wang Y 2014 Acta Mater. 73 149
[21] Albe K, Pitter Y and Sopu D 2013 Mech. Mater. 67 94
[22] Zhou X and Chen C 2016 Int. J. Plast 80 75
[23] Guo W, Jägle E, Yao J, Maier V, Korte-Kerzel S, Schneider J M and Raabe D 2014 Acta Mater. 80 94
[24] Zhao L, Chan K C and Shen S H 2018 Intermetallics 95 102
[25] Liu M C, Lee C J, Lai Y H and Huang J C 2010 Thin Solid Films 518 7295
[26] Song H Y and Li Y L 2015 Phys. Lett. A 379 2087
[27] Wu G, Chan K C, Zhu L, Sun L and Lu J 2017 Nature 545 80
[28] Song H Y, Dai J L, An M R, Xiao M X and Li Y L 2019 Comput. Mater. Sci. 165 88
[29] Song H Y, Zuo X D, An M R, Xiao M X and Li Y L 2019 Comput. Mater. Sci. 160 295
[30] Wang T W, Li X, Wu Q Q, Jiao T F, Liu X Y, Sun M, Hu F L and Huang D C 2018 Chin. Phys. B 27 124704
[31] Cui S W, Wei J A, Liu W W, Zhu R Z and Qian P 2019 Chin. Phys. B 28 016801
[32] Wang C Y, Lu S, Yu X D and Li H P 2019 Chin. Phys. B 28 016501
[33] Wolf D, Yamakov V, Phillpot S R, Mukherjee A and Gleiter H 2005 Acta Mater. 53 1
[34] Kim D H, Manuel M V, Ebrahimi F, Tulenko J S and Phillpot S R 2010 Acta Mater. 58 6217
[35] Song H Y, Zuo X D, Yin P, An M R and Li Y L 2018 J. Non-Cryst. Solids 494 1
[36] Liu X Y, Ohotnicky P P, Adams J B, Rohrer C L and Jr R W H 1997 Surf. Sci. 373 357
[37] Stukowski A 2010 Modell. Simul. Mater. Sci. Eng. 18 015012
[38] Cheung K S and Yip S 1991 J. Appl. Phys. 70 5688
[39] Wang J, Li X, Pan S and Qin J 2017 Comput. Mater. Sci. 129 115
[40] Zhou X and Chen C 2016 Comput. Mater. Sci. 117 188
[41] Peng C X, Şopu D, Cheng Y, Song K K, Wang S H, Eckert J and Wang L 2019 Mater. 168 107662
[42] Kim H K, Lee M, Lee K R and Lee J C 2013 Acta Mater. 61 6597
[43] Song H Y, Zhang K, An M R, Wang L, Xiao M X and Li Y L 2019 J. Non-Cryst. Solids 521 119550
[44] Song H Y and Li Y L 2012 J. Appl. Phys. 112 054322
[45] Song H Y, Wang J Y, An M R, Xiao M X and Li Y L 2019 Comput. Mater. Sci. 162 199
[46] Luo H B, Sheng H W, Zhang H L, Wang F Q, Fan J K, Du J, Liu J P and Szlufarska I 2019 Nat. Commun. 10 3587
[1] Internal friction behavior of Zr59Fe18Al10Ni10Nb3 metallic glass under different aging temperatures
Israa Faisal Ghazi, Israa Meften Hashim, Aravindhan Surendar, Nalbiy Salikhovich Tuguz, Aseel M. Aljeboree, Ayad F. Alkaim, and Nisith Geetha. Chin. Phys. B, 2021, 30(2): 026401.
[2] Tolman length of simple droplet: Theoretical study and molecular dynamics simulation
Shu-Wen Cui(崔树稳), Jiu-An Wei(魏久安), Qiang Li(李强), Wei-Wei Liu(刘伟伟), Ping Qian(钱萍), and Xiao Song Wang(王小松). Chin. Phys. B, 2021, 30(1): 016801.
[3] Role of Ag microalloying on glass forming ability and crystallization kinetics of ZrCoAgAlNi amorphous alloy
A Surendar, K Geetha, C Rajan, and M Alaazim. Chin. Phys. B, 2021, 30(1): 017201.
[4] Ab initio study on crystal structure and phase stability of ZrC2 under high pressure
Yong-Liang Guo(郭永亮), Jun-Hong Wei(韦俊红), Xiao Liu(刘潇), Xue-Zhi Ke(柯学志), and Zhao-Yong Jiao(焦照勇). Chin. Phys. B, 2021, 30(1): 016101.
[5] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[6] Oscillation of S5 helix under different temperatures in determination of the open probability of TRPV1 channel
Tie Li(李铁), Jun-Wei Li(李军委), Chun-Li Pang(庞春丽), Hailong An(安海龙), Yi-Zhao Geng(耿轶钊), Jing-Qin Wang(王景芹). Chin. Phys. B, 2020, 29(9): 098701.
[7] Thermal effects and evolution of the defect concentration based on shear modulus relaxation data in a Zr-based metallic glass
Qi Hao(郝奇), Ji-Chao Qiao(乔吉超), E V Goncharova, G V Afonin, Min-Na Liu(刘敏娜), Yi-Ting Cheng(程怡婷), V A Khonik. Chin. Phys. B, 2020, 29(8): 086402.
[8] Different potential of mean force of two-state protein GB1 and downhill protein gpW revealed by molecular dynamics simulation
Xiaofeng Zhang(张晓峰), Zilong Guo(郭子龙), Ping Yu(余平), Qiushi Li(李秋实), Xin Zhou(周昕), Hu Chen(陈虎). Chin. Phys. B, 2020, 29(7): 078701.
[9] Effect of Sn and Al additions on the microstructure and mechanical properties of amorphous Ti-Cu-Zr-Ni alloys
Fu-Chuan Chen(陈福川), Fu-Ping Dai(代富平), Xiao-Yi Yang(杨霄熠), Ying Ruan(阮莹), Bing-Bo Wei(魏炳波). Chin. Phys. B, 2020, 29(6): 066401.
[10] Nearly golden-ratio order in Ta metallic glass
Yuan-Qi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2020, 29(4): 046105.
[11] Molecular dynamics simulation of thermal conductivity of silicone rubber
Wenxue Xu(徐文雪), Yanyan Wu(吴雁艳), Yuan Zhu(祝渊), Xin-Gang Liang(梁新刚). Chin. Phys. B, 2020, 29(4): 046601.
[12] Anisotropic plasticity of nanocrystalline Ti: A molecular dynamics simulation
Minrong An(安敏荣), Mengjia Su(宿梦嘉), Qiong Deng(邓琼), Haiyang Song(宋海洋), Chen Wang(王晨), Yu Shang(尚玉). Chin. Phys. B, 2020, 29(4): 046201.
[13] Fractional variant of Stokes-Einstein relation in aqueous ionic solutions under external static electric fields
Gan Ren(任淦), Shikai Tian(田时开). Chin. Phys. B, 2020, 29(3): 036101.
[14] Influence of Zr50Cu50 thin film metallic glass as buffer layer on the structural and optoelectrical properties of AZO films
Bao-Qing Zhang(张宝庆), Gao-Peng Liu(刘高鹏), Hai-Tao Zong(宗海涛), Li-Ge Fu(付丽歌), Zhi-Fei Wei(魏志飞), Xiao-Wei Yang(杨晓炜), Guo-Hua Cao(曹国华). Chin. Phys. B, 2020, 29(3): 037303.
[15] Find slow dynamic modes via analyzing molecular dynamics simulation trajectories
Chuanbiao Zhang(张传彪) and Xin Zhou(周昕)†. Chin. Phys. B, 2020, 29(10): 108706.
No Suggested Reading articles found!