Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 056102    DOI: 10.1088/1674-1056/ab8459
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Modification of the Peierls-Nabarro model for misfit dislocation

Shujun Zhang(张淑君), Shaofeng Wang(王少峰)
Department of Physics and Institute for Structure and Function, Chongqing University, Chongqing 400030, China
Abstract  For a misfit dislocation, the balance equations satisfied by the displacement fields are modified, and an extra term proportional to the second-order derivative appears in the resulting misfit equation compared with the equation derived by Yao et al. This second-order derivative describes the lattice discreteness effect that arises from the surface effect. The core structure of a misfit dislocation and the change in interfacial spacing that it induces are investigated theoretically in the framework of an improved Peierls-Nabarro equation in which the effect of discreteness is fully taken into account. As an application, the structure of the misfit dislocation for a honeycomb structure in a two-dimensional heterostructure is presented.
Keywords:  interfacial misfit dislocation      the energy of misfit dislocation  
Received:  07 March 2020      Revised:  25 March 2020      Published:  05 May 2020
PACS:  61.72.Bb (Theories and models of crystal defects)  
  61.80.-x (Physical radiation effects, radiation damage)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11874093).
Corresponding Authors:  Shaofeng Wang     E-mail:  sfwang@cqu.edu.cn

Cite this article: 

Shujun Zhang(张淑君), Shaofeng Wang(王少峰) Modification of the Peierls-Nabarro model for misfit dislocation 2020 Chin. Phys. B 29 056102

[1] Frank F C and Van der Merwe J H 1949 Proc. R. Soc. Lond. A 198 205
[2] Frenkel Y I and Kontorova T 1938 Zh. Eksp. Teor. Fiz. 8 1340
[3] Dundurs J and Hetenyi M 1961 J. Appl. Mech. 28 103
[4] Dundurs J 1968 J. Appl. Phys. 39 4152
[5] Peierls R 1940 Proc. Phys. Soc. 52 34
[6] Nabarro F R N 1947 Proc. Phys. Soc. 59 256
[7] Van der Merwe J H 1963 J. Appl. Phys. 34 117
[8] Yao Y, Wang T and Wang C 1999 Phys. Rev. B 59 8232
[9] Van der Merwe J H 1950 Proc. Phys. Soc. A 63 616
[10] Yu T, Xie H X and Wang C Y 2012 Chin. Phys. B 21 026104
[11] Zhang S J and Wang S F 2020 J. Appl. Phys. 127 085303
[12] Wang S F 2015 Philos. Mag. 95 3768
[13] Wang S F 2009 J. Phys. A: Math. Theor. 42 025208
[14] Zhang H L, Wang S F, Wang R and Jiao J 2010 Eur. Phys. J. B 73 489
[15] Hirth J P and Lothe J 1982 Theory of Dislocations (Krieger)
[16] Rodney D, Ventelon L, Clouet E, Pizzagalli L and Willaime F 2017 Acta Mater. 124 633
[17] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[18] Blöchl P E 1994 Phys. Rev. B 50 17953
[19] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[20] Wang S F, Zhang S J, Bai J H and Yao Y 2015 J. Appl. Phys. 118 244903
[21] Wang S F 2003 Phys. Lett. A 313 408
[22] Wang S F, Li S R and Wang R 2011 Eur. Phys. J. B 83 15
[1] Understanding defect production in an hcp Zr crystal upon irradiation: An energy landscape perspective
Jiting Tian(田继挺). Chin. Phys. B, 2021, 30(2): 026102.
[2] First-principles study of oxygen adsorbed on Au-doped RuO2 (110) surface
Ji Zhang(张季), De-Ming Zhang(张德明). Chin. Phys. B, 2019, 28(11): 116107.
[3] Dislocation neutralizing in a self-organized array of dislocation and anti-dislocation
Feng-Lin Deng(邓凤麟), Xiang-Sheng Hu(胡湘生), Shao-Feng Wang(王少峰). Chin. Phys. B, 2019, 28(11): 116103.
[4] First-principles study of the band gap tuning and doping control in CdSexTe1-x alloy for high efficiency solar cell
Jingxiu Yang(杨竞秀), Su-Huai Wei(魏苏淮). Chin. Phys. B, 2019, 28(8): 086106.
[5] Impressive self-healing phenomenon of Cu2ZnSn(S, Se)4 solar cells
Qing Yu(于晴), Jiangjian Shi(石将建), Pengpeng Zhang(张朋朋), Linbao Guo(郭林宝), Xue Min(闵雪), Yanhong Luo(罗艳红), Huijue Wu(吴会觉), Dongmei Li(李冬梅), Qingbo Meng(孟庆波). Chin. Phys. B, 2018, 27(6): 066108.
[6] First-principles investigations of proton generation in α-quartz
Yunliang Yue(乐云亮), Yu Song(宋宇), Xu Zuo(左旭). Chin. Phys. B, 2018, 27(3): 037102.
[7] Threshold resistance switching in silicon-rich SiOx thin films
Da Chen(陈达), Shi-Hua Huang(黄仕华). Chin. Phys. B, 2016, 25(11): 117701.
[8] Low specific contact resistivity to graphene achieved by AuGe/Ni/Au and annealing process
Shu-Zhen Yu(于淑珍), Yan Song(宋焱), Jian-Rong Dong(董建荣), Yu-Run Sun(孙玉润), Yong-Ming Zhao(赵勇明), Yang He(何洋). Chin. Phys. B, 2016, 25(11): 118101.
[9] Atomistic simulation of topaz: Structure, defect, and vibrational properties
Niu Ji-Nan, Shen Shai-Shai, Liu Zhang-Sheng, Feng Pei-Zhong, Ou Xue-Mei, Qiang Ying-Huai, Zhu Zhen-Cai. Chin. Phys. B, 2015, 24(9): 096102.
[10] Extreme narrow photonic passbands generated from defective two-segment-connected triangular waveguide networks
Tang Zhen-Xing, Yang Xiang-Bo, Lu Jian, Liu Timon Cheng-Yi. Chin. Phys. B, 2014, 23(4): 044207.
[11] A strategy of enhancing the photoactivity of TiO2 containing nonmetal and transition metal dopants
Li Wei, Wei Shi-Hao, Duan Xiang-Mei. Chin. Phys. B, 2014, 23(2): 027305.
[12] Interaction of point defects with twin boundaries in Au:A molecular dynamics study
Fayyaz Hussain, Sardar Sik,ar Hayat, Zulfiqar Ali Shah, Najmul Hassan, Shaikh Aftab Ahmad. Chin. Phys. B, 2013, 22(9): 096102.
[13] Elastic behaviour of an edge dislocation near a sharp crack emanating from a semi-elliptical blunt crack
Fang Qi-Hong, Song Hao-Peng, Liu You-Wen. Chin. Phys. B, 2010, 19(1): 016102.
[14] Excitation of defect modes from the extended photonicband-gap structures of 1D photonic lattices
Zhou Ke-Ya, GuoZhong-Yi, Muhammad Ashfaq Ahmad, Liu Shu-Tian. Chin. Phys. B, 2010, 19(1): 014201.
[15] Experimental verification of Foreman dislocation model
Zhao Chun-Wang, Xing Yong-Ming, Bai Pu-Cun. Chin. Phys. B, 2009, 18(6): 2464-2468.
No Suggested Reading articles found!