Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 066103    DOI: 10.1088/1674-1056/ab8458
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

First-principles calculations of solute-vacancy interactions in aluminum

Sha-Sha Zhang(张莎莎)1, Zheng-Jun Yao(姚正军)1, Xiang-Shan Kong(孔祥山)2, Liang Chen(陈良)2, Jing-Yu Qin(秦敬玉)2
1 College of Materials and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
2 Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061, China
Abstract  The interactions of solute atoms with vacancies play a key role in diffusion and precipitation of alloying elements, ultimately influencing the mechanical properties of aluminum alloys. In this study, first-principles calculations are systematically performed to quantify the solute-vacancy interactions for the 3d-4p series and the 4d-5p series. The solute-vacancy interaction gradually transforms from repulsion to attraction from left to right. The solute-vacancy binding energy is sensitive to the supercell size for elements at the beginning. These behaviors of the solute-vacancy binding energy can be understood in terms of the combination and competition between the elastic and electronic interactions. Overall, the electronic binding energy follows a similar trend to the total binding energy and plays a major role in the solute-vacancy interactions.
Keywords:  first-principles calculations      solute-vacancy binding      aluminum alloys  
Received:  03 March 2020      Revised:  25 March 2020      Published:  05 June 2020
PACS:  61.72.jd (Vacancies)  
  81.05.Bx (Metals, semimetals, and alloys)  
  63.20.dk (First-principles theory)  
  71.55.-i (Impurity and defect levels)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51701095 and 51771185) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20170798).
Corresponding Authors:  Sha-Sha Zhang, Xiang-Shan Kong     E-mail:  s.zhang@nuaa.edu.cn;xskong@sdu.edu.cn

Cite this article: 

Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉) First-principles calculations of solute-vacancy interactions in aluminum 2020 Chin. Phys. B 29 066103

[1] Gayle F M and Goodway M 1994 Science 266 1015
[2] Ohta M, Hashimoto F and Tanimoto T 1968 Memoirs of the School of Engineering (Okayama: Okayama University) pp. 39-50
[3] Ohta M and Hashimoto F 1965 Trans. Jpn. Inst. Met. 6 9
[4] Raman K, Das E and Vasu K 1971 J. Mater. Sci. 6 1367
[5] Melikhova O, Kuriplach J, Čížek J and Procházka I 2006 Appl. Surf. Sci. 252 3285
[6] Balluffi R W and Ho P S 1973 Diffusion (Metal Park, OH: American Society for Metals) p. 83
[7] Wolverton C 2007 Acta Mater. 55 5867
[8] Simonovic D and Sluiter M H 2009 Phys. Rev. B 79 054304
[9] Hoshino T, Zeller R and Dederichs P 1996 Phys. Rev. B 53 8971
[10] Ohnuma T, Soneda N and Iwasawa M 2009 Acta Mater. 57 5947
[11] You Y W, Kong X S, Wu X B, Liu W, Liu C S, Fang Q, Chen J, Luo G N and Wang Z 2014 J. Nucl. Mater. 455 68
[12] Kong X S, Wu X B, You Y W, Liu C S, Fang Q, Chen J L, Luo G N and Wang Z 2014 Acta Mater. 66 172
[13] Shin D and Wolverton C 2010 Acta Mater. 58 531
[14] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[15] Kresse G and Furthmüller J 1996 Comput. Mater. Sci. 6 15
[16] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[17] Blöchl P E 1994 Phys. Rev. B 50 17953
[18] Kresse G and Joubert D 1999 Phys. L Rev. B 59 1758
[19] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[20] Eisenmann B and Schäfer H 1988 Structure Data of Elements and Intermetallic Phases (Berlin: Springer-Verlag)
[21] Every A and McCurdy A 1992 Low Frequency Properties of Dielectric Crystals (Berlin: Springer-Verlag)
[22] Bass J 1967 Philos. Mag. 15 717
[23] Kurth S, Perdew J P and Blaha P 1999 Int. J. Quantum Chem. 75 889
[24] Stampfl C and Van de Walle C 1999 Phys. Rev. B 59 5521
[25] Carling K, Wahnström G, Mattsson T R, Mattsson A E, Sandberg N and Grimvall G 2000 Phys. Rev. Lett. 85 3862
[26] Olsson P, Klaver T and Domain C 2010 Phys. Rev. B 81 054102
[27] Li Y J, Kulkova S E, Hu Q M, Bazhanov D I, Xu D S, Hao Y L and Yang R 2007 Phys. Rev. B 76 064110
[28] Lin K and Zhao Y P 2019 Extreme Mech. Lett. 30 100501
[1] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[2] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[3] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[4] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[5] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[6] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[7] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[8] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[9] Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(5): 058104.
[10] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
[11] Designing solar-cell absorber materials through computational high-throughput screening
Xiaowei Jiang(江小蔚), Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(2): 028803.
[12] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[13] Band engineering of B2H2 nanoribbons
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2019, 28(4): 046803.
[14] Hydrogenated antimonene as quantum spin Hall insulator: A first-principles study
Xin He(贺欣), Ji-Biao Li(李佶彪). Chin. Phys. B, 2019, 28(3): 037301.
[15] Electronic properties of size-dependent MoTe2/WTe2 heterostructure
Jing Liu(刘婧), Ya-Qiang Ma(马亚强), Ya-Wei Dai(戴雅薇), Yang Chen(陈炀), Yi Li(李依), Ya-Nan Tang(唐亚楠), Xian-Qi Dai(戴宪起). Chin. Phys. B, 2019, 28(10): 107101.
No Suggested Reading articles found!