Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 065208    DOI: 10.1088/1674-1056/ab8457
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Interaction of supersonic molecular beam with low-temperature plasma

Dong Liu(刘东)1, Guo-Feng Qu(曲国峰)1, Zhan-Hui Wang(王占辉)2, Hua-Jie Wang(王华杰)2, Hao Liu(刘灏)2, Yi-Zhou Wang(王艺舟)1, Zi-Xu Xu(徐子虚)1, Min Li(李敏)1, Chao-Wen Yang(杨朝文)1, Xing-Quan Liu(刘星泉)1, Wei-Ping Lin(林炜平)1, Min Yan(颜敏)1, Yu Huang(黄宇)1, Yu-Xuan Zhu(朱宇轩)2, Min Xu(许敏)2, Ji-Feng Han(韩纪锋)1
1 Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, College of Physics, Sichuan University, Chengdu 610064, China;
2 Southwestern Institute of Physics, Chengdu 610041, China
Abstract  The interaction between the supersonic molecular beam (SMB) and the low-temperature plasma is a critical issue for the diagnosis and fueling in the Tokamak device. In this work, the interaction process between the argon SMB and the argon plasma is studied by a high-speed camera based on the Linear Experimental Advanced Device (LEAD) in Southwestern Institute of Physics, China. It is found that the high-density SMB can extinct the plasma temporarily and change the distribution of the plasma density significantly, while the low-density SMB can hardly affect the distribution of plasma density. This can be used as an effective diagnostic technique to study the evolution of plasma density in the interaction between the SMB and plasma. Moreover, the related simulation based on this experiment is carried out to better understand the evolution of electron density and ion density in the interaction. The simulation results can be used to analyze and explain the experimental results well.
Keywords:  supersonic molecular beam      low-temperature plasma      emission      electron density diagnosis      high-speed camera  
Received:  24 January 2020      Revised:  05 March 2020      Published:  05 June 2020
PACS:  52.40.Mj (Particle beam interactions in plasmas)  
  37.20.+j (Atomic and molecular beam sources and techniques)  
  52.25.-b (Plasma properties)  
  07.05.-t (Computers in experimental physics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11575121, 11275133, and 11575055) and the National Magnetic Confinement Fusion Program of China (Grant No. 2014GB125004).
Corresponding Authors:  Guo-Feng Qu, Ji-Feng Han     E-mail:  quguofeng@scu.edu.cn;hanjf@scu.edu.cn

Cite this article: 

Dong Liu(刘东), Guo-Feng Qu(曲国峰), Zhan-Hui Wang(王占辉), Hua-Jie Wang(王华杰), Hao Liu(刘灏), Yi-Zhou Wang(王艺舟), Zi-Xu Xu(徐子虚), Min Li(李敏), Chao-Wen Yang(杨朝文), Xing-Quan Liu(刘星泉), Wei-Ping Lin(林炜平), Min Yan(颜敏), Yu Huang(黄宇), Yu-Xuan Zhu(朱宇轩), Min Xu(许敏), Ji-Feng Han(韩纪锋) Interaction of supersonic molecular beam with low-temperature plasma 2020 Chin. Phys. B 29 065208

[1] Xiao J S, Yang Z J, Liu M H, Zhuang G, Pan X M, Zhang C and Wang Z J 2015 J. Fusion Energy 34 1020
[2] Sajjad S, Gao X, Ling B, Bhatti S H and Ang T 2009 Phys. Lett. A 373 1133
[3] Yuan J B, Yuan B D, Xu M, Yu Y, Nie L, Ke R, Wang Z H, Gong S B, Wu T, Wu Y F, Long T, Wang H J, Liu H and Yue W 2019 Plasma Sci. Technol. 21 084002
[4] Baylor L R, Jernigan T C, Combs S K, Houlberg W A, Murakami M, Gohil P, Burrell K H, Greenfield C M, Groebner R J, Hsieh C L, La Haye R J, Parks P B, Staebler G M, Team D I I I D, Schmidt G L, Ernst D R, Synakowski E J and Porkolab M 2000 Phys. Plasmas 7 1878
[5] Yao L H, Feng B B, Feng Z, Luo J L, Dong J F, Yan L W and Hong W Y 2001 Plasma Sci. Technol. 3 589
[6] Zhou Y L, Wang Z H, Xu M, Wang Q, Nie L, Feng H and Sun W G 2016 Chin. Phys. B 25 095201
[7] Rajeev R, Raja S V, Trivikram T M, Rishad K P M and Krishnamurthy M 2013 J. Appl. Phys. 114 083112
[8] Liu D, Han J F, Chen Z Y, Bai L X and Zhou J X 2016 Rev. Sci. Instrum. 87 123504
[9] Chen Z Y, Li M, Zhou M L, Liu D, Qu G F, Wang Y Z and Han J F 2019 J. Fusion Energy 38 228
[10] Yao L H, Zhou Y, Cao J Y, Feng B B, Feng Z, Luo J L, Dong J F, Yan L W, Hong W Y, Li K H, Cui Z Y, Liu Y, Wang E Y, Yan J C and HL-1M Team 2001 Nucl. Fusion 41 817
[11] Yao L H, Feng B B, Chen C Y, Shi Z B, Yuan B S, Zhou Y, Duan X R, Sun H J, Lu J, Jiao Y M, Ni G Q, Lu H Y, Xiao W W, Li W, Pan Y D, Hong W Y, Ran H, Ding X T and Liu Y 2007 Nucl. Fusion 47 1399
[12] Yu D Y, Chen C Y, Yao L H, Feng B B, Han X Y, Yang L M, Zhong W L, Zhou Y, Zhao K J, Huang Y, Liu Y, Yan L W, Yang Q W, Dong J Q and Duan X R 2010 Nucl. Fusion 50 035009
[13] Yao L H, Zhao D W, Feng B B, Chen C Y, Zhou Y, Han X Y, Li Y G, Jerome B and Duan X R 2010 Plasma Sci. Technol. 12 529
[14] Yuan X L, Li J G, Wu J H, Li J H, Chen Y, Zhuang H D, Zhou Y, Zheng X W and Hu J S 2018 Fusion Eng. Des. 134 62
[15] Takenaga H, Miyo Y, Bucalossi J, Marty V, Urano H, Asakura N, Nishiyama T, Sasajima T, Masaki K and Kaminaga A 2010 Nucl. Fusion 50 115003
[16] Shi Z B, Yao L H, Ding X T, Duan X R, Feng B B, Liu Z T, Xiao W W, Sun H J, Li X, Li W, Chen C Y and Jiao Y M 2007 Acta Phys. Sin. 56 4771 (in Chinese)
[17] Wu X K, Li H D, Wang Z H, Feng H and Zhou Y L 2017 Chin. Phys. B 26 065201
[18] Wang Z H, Xu X Q, Xia T Y and Rognlien T D 2014 Nucl. Fusion 54 043019
[19] Zhou Y L, Wang Z H, Xu X Q, Li H D, Feng H and Sun W G 2015 Phys. Plasmas 22 012503
[20] Wang Y H, Guo W F, Wang Z H, Ren Q L, Sun A P, Xu M, Wang A K and Xiang N 2016 Chin. Phys. B 25 106601
[21] Liu H 2018 Design and Construction of Linear Experimental Advanced Device, MS dissertation (Hefei: University of Science and Technology of China) (in Chinese)
[22] Anderson C A, Hopkins M B and Graham W G 1990 Rev. Sci. Instrum. 61 448
[23] Tachibana K, Nishida M, Harima H and Urano Y 1984 J. Phys. D: Appl. Phys. 17 1727
[24] Shinohara S, Hada T, Motomura T, Tanaka K, Tanikawa T, Toki K, Tanaka Y and Shamrai K P 2009 Phys. Plasmas 16 057104
[25] Shinohara S, Nishida H, Tanikawa T, Hada T, Funaki I and Shamrai K P 2014 IEEE T. Plasma Sci. 42 1245
[26] Katsonwas K, Berenguer Ch, Kaminska A and Dudeck M 2011 Int. J. Aerosp. Eng. 2011 896836
[27] Boffard J B, Chiaro B, Weber T and Lin C C 2007 Atom. Data Nucl. Data 93 831
[28] Barata J A S 2007 Nucl. Instrum. Method B 580 14
[1] Effect of spatially nonlocal versus local optical response of a gold nanorod on modification of the spontaneous emission
Sha-Sha Wen(文莎莎), Meng Tian(田锰), Hong Yang(杨红), Su-Jun Xie(谢素君), Xiao-Yun Wang(王小云), Yun Li(李芸), Jie Liu(刘杰), Jin-Zhang Peng(彭金璋), Ke Deng(邓科), He-Ping Zhao(赵鹤平), and Yong-Gang Huang(黄勇刚). Chin. Phys. B, 2021, 30(2): 027801.
[2] The effects of Er 3 + ion concentration on 2.0-μ m emission performance in Ho 3 + /Tm 3 + co-doped Na 5Y 9F32 single crystal under 800-nm excitation
Benli Ding(丁本利), Xiong Zhou(周雄), Jianli Zhang(章践立), Haiping Xia(夏海平), Hongwei Song(宋宏伟), and Baojiu Chen(陈宝玖). Chin. Phys. B, 2021, 30(1): 017801.
[3] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
[4] Exciton emissions of CdS nanowire array fabricated on Cd foil by the solvothermal method
Yong Li(李勇), Peng-Fei Ji(姬鹏飞), Ya-Juan Hao(郝亚娟), Yue-Li Song(宋月丽), Feng-Qun Zhou(周丰群), and Shu-Qing Yuan(袁书卿). Chin. Phys. B, 2021, 30(1): 016104.
[5] Relative phase-dependent two-electron emission dynamics with two-color circularly polarized laser fields
Tong-Tong Xu(徐彤彤), Lian-Lian Zhang(张莲莲), Zhao Jin(金钊), Wei-Jiang Gong(公卫江). Chin. Phys. B, 2020, 29(9): 093202.
[6] Analysis of stress-induced inhomogeneous electroluminescence in GaN-based green LEDs grown on mesh-patterned Si (111) substrates with n-type AlGaN layer
Quan-Jiang Lv(吕全江), Yi-Hong Zhang(张一鸿), Chang-Da Zheng(郑畅达), Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Jun-Lin Liu(刘军林). Chin. Phys. B, 2020, 29(8): 087801.
[7] Photoluminescence in wide band gap corundum Mg4Ta2O9 single crystals
Liang Li(李亮), Yu-Lu Zheng(郑雨露), Yu-Xin Hu(胡雨馨), Fang-Fei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(8): 083301.
[8] Anomalous spectral weight transfer in the nematic state of iron-selenide superconductor
C Cai(蔡淙), T T Han(韩婷婷), Z G Wang(王政国), L Chen(陈磊), Y D Wang(王宇迪), Z M Xin(信子鸣), M W Ma(马明伟), Yuan Li(李源), Y Zhang(张焱). Chin. Phys. B, 2020, 29(7): 077401.
[9] High-resolution angle-resolved photoemission study of oxygen adsorbed Fe/MgO(001)
Mingtian Zheng, Eike F. Schwier, Hideaki Iwasawa, Kenya Shimada. Chin. Phys. B, 2020, 29(6): 067901.
[10] Semi-integer harmonic generation from an argon atom by bichromatic counter-rotating circularly polarized laser field
Tong Qi(齐桐), Xiao-Xin Huo(霍晓鑫), Jun Zhang(张军), Xue-Shen Liu(刘学深). Chin. Phys. B, 2020, 29(5): 053201.
[11] Electronic structure and spatial inhomogeneity of iron-based superconductor FeS
Chengwei Wang(王成玮), Meixiao Wang(王美晓), Juan Jiang(姜娟), Haifeng Yang(杨海峰), Lexian Yang(杨乐仙), Wujun Shi(史武军), Xiaofang Lai(赖晓芳), Sung-Kwan Mo, Alexei Barinov, Binghai Yan(颜丙海), Zhi Liu(刘志), Fuqiang Huang(黄富强), Jinfeng Jia(贾金峰), Zhongkai Liu(柳仲楷), Yulin Chen(陈宇林). Chin. Phys. B, 2020, 29(4): 047401.
[12] Evidence for bosonic mode coupling in electron dynamics of LiFeAs superconductor
Cong Li(李聪), Guangyang Dai(代光阳), Yongqing Cai(蔡永青), Yang Wang(王阳), Xiancheng Wang(望贤成), Qiang Gao(高强), Guodong Liu(刘国东), Yuan Huang(黄元), Qingyan Wang(王庆艳), Fengfeng Zhang(张丰丰), Shenjin Zhang(张申金), Feng Yang(杨峰), Zhimin Wang(王志敏), Qinjun Peng(彭钦军), Zuyan Xu(许祖彦), Changqing Jin(靳常青), Lin Zhao(赵林)†, and X J Zhou(周兴江)‡. Chin. Phys. B, 2020, 29(10): 107402.
[13] Improvement of TE-polarized emission in type-Ⅱ InAlN-AlGaN/AlGaN quantum well
Yi Li(李毅), Youhua Zhu(朱友华), Meiyu Wang(王美玉), Honghai Deng(邓洪海), Haihong Yin(尹海宏). Chin. Phys. B, 2019, 28(9): 097801.
[14] Evolution of incommensurate superstructure and electronic structure with Pb substitution in (Bi2-xPbx)Sr2CaCu2O8+δ superconductors
Jing Liu(刘静), Lin Zhao(赵林), Qiang Gao(高强), Ping Ai(艾平), Lu Zhang(张璐), Tao Xie(谢涛), Jian-Wei Huang(黄建伟), Ying Ding(丁颖), Cheng Hu(胡成), Hong-Tao Yan(闫洪涛), Chun-Yao Song(宋春尧), Yu Xu(徐煜), Cong Li(李聪), Yong-Qing Cai(蔡永青), Hong-Tao Rong(戎洪涛), Ding-Song Wu(吴定松), Guo-Dong Liu(刘国东), Qing-Yan Wang(王庆艳), Yuan Huang(黄元), Feng-Feng Zhang(张丰丰), Feng Yang(杨峰), Qin-Jun Peng(彭钦军), Shi-Liang Li(李世亮), Huai-Xin Yang(杨槐馨), Jian-Qi Li(李建奇), Zu-Yan Xu(许祖彦), Xing-Jiang Zhou(周兴江). Chin. Phys. B, 2019, 28(7): 077403.
[15] Direct observation of the f-c hybridization in the ordered uranium films on W(110)
Qiuyun Chen(陈秋云), Shiyong Tan(谭世勇), Wei Feng(冯卫), Lizhu Luo(罗丽珠), Xiegang Zhu(朱燮刚), Xinchun Lai(赖新春). Chin. Phys. B, 2019, 28(7): 077404.
No Suggested Reading articles found!