Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 065206    DOI: 10.1088/1674-1056/ab8456
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Measurement of molybdenum ion density for L-mode and H-mode plasma discharges in the EAST tokamak

Yongcai Shen(沈永才)1,2, Hongming Zhang(张洪明)1, Bo Lyu(吕波)1, Yingying Li(李颖颖)1, Jia Fu(符佳)1, Fudi Wang(王福地)1, Qing Zang(臧庆)1, Baonian Wan(万宝年)1, Pan Pan(潘盼)2, Minyou Ye(叶民友)3
1 Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031, China;
2 School of Mathematics and Physics, Anqing Normal University, Anqing 246011, China;
3 Department of Engineering and Applied Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  We report the measurement of total molybdenum ion density for L-mode and H-mode plasmas on EAST using spectral lines observation and calculation based on an impurity transport code. A flat-filed extreme ultraviolet spectrometer with some spatial resolution is used to obtain the radial profiles of molybdenum spectral line emissions. The absolute calibration for the extreme ultraviolet spectrometer is finished by comparing the calculated bremsstrahlung intensity with the readings of CCD detector. Molybdenum ion transport study is performed using the radial ion density profiles and one-dimensional impurity transport code STRAHL. The total molybdenum density profiles are determined from the transport analysis. The molybdenum density during L-mode and H-mode phases are obtained, which are about 3 and 4 orders of magnitude smaller than the electron density, respectively. An inward pinch is found during the H-mode phase that leads to the peaked profile of molybdenum density.
Keywords:  EAST      EUV spectroscopy      molybdenum density      L-mode and H-mode  
Received:  06 January 2020      Revised:  29 February 2020      Accepted manuscript online: 
PACS:  52.70.Kz (Optical (ultraviolet, visible, infrared) measurements)  
  52.25.Vy (Impurities in plasmas)  
  32.30.Rj (X-ray spectra)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFE031300), the Key Program of Research and Development of Hefei Science Center of China (Grant No. 2017HSC-KPRD002), the National Natural Science Foundation of China (Grant No. 11805231), the Natural Science Foundation of Anhui Province of China (Grant Nos. 1908085J01, 1808085QA14, and 1908085QF274), the ASIPP Science and Research Fund of China (Grant No. DSJJ-17-03), Collaborative Innovation Program of Hefei Science Center, CAS (Grant No. 2019HSC-CIP005), and Anqing Normal University Research Project, China (Grant Nos. 043-180079 and 044-140001000024).
Corresponding Authors:  Bo Lyu     E-mail:  blu@ipp.ac.cn

Cite this article: 

Yongcai Shen(沈永才), Hongming Zhang(张洪明), Bo Lyu(吕波), Yingying Li(李颖颖), Jia Fu(符佳), Fudi Wang(王福地), Qing Zang(臧庆), Baonian Wan(万宝年), Pan Pan(潘盼), Minyou Ye(叶民友) Measurement of molybdenum ion density for L-mode and H-mode plasma discharges in the EAST tokamak 2020 Chin. Phys. B 29 065206

[1] Cui Z Y, Morita S, Zhou H Y et al. 2013 Nucl. Fusion 53 093001
[2] Dux R, Giroud C, Neu R et al. 2003 J. Nucl. Mater. 313-316 1150
[3] Dux R and Peeters A G 2000 Nucl. Fusion 40 1721
[4] Shen Y C, Lyu B, Du X W et al. 2015 Plasma. Sci. Technol. 17 183
[5] Dong C F, Morita S, Goto M and Wang E H 2011 Rev. Sci. Instrum. 82 113102
[6] Lepson J K, Beiersdorfer P, Clementson J et al. 2010 J. Phys. B: At. Mol. Opt. Phys. 43 144018
[7] Cui Z Y, Morita S, Fu B Z et al. 2010 Rev. Sci. Instrum. 81 043503
[8] Beiersdorfer P, Brown G V, Kamp J B et al. 2011 Can. J. Phys. 89 653
[9] Shen Y, Du X, Zhang W, Wang Q et al. 2013 Nucl. Instrum. Methods Phys. Res. Sect. A 700 86
[10] Shen Y C, Lu B, Du X W et al. 2013 Fusion Eng. 88 3072
[11] Shen Y C, Lyu B, Wang F D et al. 2016 Chin. Phys. Lett. 33 065205
[12] Zhang H M, Shen Y C, Fu J et al. 2013 Nucl. Fusion. Plasma Phys. 33 312 (in Chinese)
[13] Dong C F, Wang E H, Morita S, Goto M et al. 2013 Plasma Sci. Technol. 15 230
[14] Kuldkepp M, Brunsell P R, Cecconello M et al. 2006 Phys. Plasmas 13 092506
[15] Leigheb M, Romanelli M, Gabellieri L et al. 2007 Plasma Phys. Control. Fusion. 49 1897
[16] Puiatti M E, Valisa M, Angioni C et al. 2006 Phys. Plasmas 13 042501
[17] Delgado-Aparicio L, Stutman D, Tritz K et al. 2011 Nucl. Fusion 51 083047
[18] Chowdhuri M B, Ghosh J, Banerjee S et al. 2015 Nucl. Fusion 55 023006
[19] Wan B N, Liang Y F, Gong X Z et al. 2017 Nucl. Fusion 57 102019
[20] Griem H R 1997 Principles of Plasma Spectroscopy (Cambridge: Cambridge University Press)
[21] Shao C Q, Zhao J Y and Zang Q, Han X F, Xi X Q, Yang J H, Chen H and Hu A L 2014 Plasma. Sci. Technol. 16 721
[22] Shen Y C, Fu J, Lyu Bo et al. 2016 Nucl. Tech. 39 020603 (in Chinese)
[23] http://adas.phys.strath.ac.uk
[24] Huang X L, Morita S, Oishi T et al. 2017 Nucl. Fusion 57 086031
[25] Chowdhuri M B, Ghosh J, Banerjee S et al. 2013 Nucl. Fusion 53 023006
[26] Delgado-Aparicio L, Bitter M, Granetz R, Reinke M and Beiersdorfer P 2012 Rev. Sci. Instrum. 83 10E517
[27] Duan Y M, Hu L Q, Chen K Y, Du W, Zhang L and Team E A S T 2013 J. Nucl. Mater. 438 S338
[1] Numerical simulation of fueling pellet ablation and transport in the EAST H-mode discharge
Wan-Ting Chen(陈婉婷), Ji-Zhong Sun(孙继忠), Fang Gao(高放), Lei Peng(彭磊), and De-Zhen Wang(王德真). Chin. Phys. B, 2022, 31(7): 075204.
[2] Modeling of beam ions loss and slowing down with Coulomb collisions in EAST
Yifeng Zheng(郑艺峰), Jianyuan Xiao(肖建元), Baolong Hao(郝保龙), Liqing Xu(徐立清), Yanpeng Wang(王彦鹏), Jiangshan Zheng(郑江山), and Ge Zhuang(庄革). Chin. Phys. B, 2022, 31(7): 075201.
[3] Experimental investigation on divertor tungsten sputtering with neon seeding in ELMy H-mode plasma in EAST tokamak
Dawei Ye(叶大为), Fang Ding(丁芳), Kedong Li(李克栋), Zhenhua Hu(胡振华), Ling Zhang(张凌), Xiahua Chen(陈夏华), Qing Zhang(张青), Pingan Zhao(赵平安), Tao He(贺涛), Lingyi Meng(孟令义), Kaixuan Ye(叶凯萱), Fubin Zhong(钟富彬), Yanmin Duan(段艳敏), Rui Ding(丁锐), Liang Wang(王亮), Guosheng Xu(徐国盛), Guangnan Luo(罗广南), and EAST team. Chin. Phys. B, 2022, 31(6): 065201.
[4] Study on divertor plasma behavior through sweeping strike point in new lower divertor on EAST
Yu-Qiang Tao(陶余强), Guo-Sheng Xu(徐国盛), Ling-Yi Meng(孟令义), Rui-Rong Liang(梁瑞荣), Lin Yu(余林), Xiang Liu(刘祥), Ning Yan(颜宁), Qing-Quan Yang(杨清泉), Xin Lin(林新), and Liang Wang(王亮). Chin. Phys. B, 2022, 31(6): 065204.
[5] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[6] Beam alignments based on the spectrum decomposition of orbital angular momentums for acoustic-vortex communications
Gepu Guo(郭各朴), Xinjia Li(李昕珈), Qingdong Wang(王青东), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), and Dong Zhang(章东). Chin. Phys. B, 2022, 31(12): 124302.
[7] Evolution of the high-field-side radiation belts during the neon seeding plasma discharge in EAST tokamak
Ji-Chan Xu(许吉禅), Liang Wang(王亮), Guo-Sheng Xu(徐国盛), Yan-Min Duan(段艳敏), Ling-Yi Meng(孟令义), Ke-Dong Li(李克栋), Fang Ding(丁芳), Rui-Rong Liang(梁瑞荣), Jian-Bin Liu(刘建斌), and EAST Team. Chin. Phys. B, 2022, 31(10): 105203.
[8] Reduction of impurity confinement time by combined heating of LHW and ECRH in EAST
Zong Xu(许棕), Zhen-Wei Wu(吴振伟), Ling Zhang(张凌), Yue-Heng Huang(黄跃恒), Wei Gao(高伟), Yun-Xin Cheng(程云鑫), Xiao-Dong Lin(林晓东), Xiang Gao(高翔), Ying-Jie Chen(陈颖杰), Lei Li(黎嫘), Yin-Xian Jie(揭银先), Qing Zang(臧庆), Hai-Qing Liu(刘海庆), and EAST team. Chin. Phys. B, 2021, 30(7): 075205.
[9] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[10] Tests of the real-time vertical growth rate calculation on EAST
Na-Na Bao(鲍娜娜), Yao Huang(黄耀), Jayson Barr, Zheng-Ping Luo(罗正平), Yue-Hang Wang(汪悦航), Shu-Liang Chen(陈树亮), Bing-Jia Xiao(肖炳甲), David Humphreys. Chin. Phys. B, 2020, 29(6): 065204.
[11] Plasma shape optimization for EAST tokamak using orthogonal method
Yuan-Yang Chen(陈远洋), Xiao-Hua Bao(鲍晓华), Peng Fu(傅鹏), Ge Gao(高格). Chin. Phys. B, 2019, 28(1): 015201.
[12] Novel quantum watermarking algorithm based on improved least significant qubit modification for quantum audio
Zhi-Guo Qu(瞿治国), Huang-Xing He(何煌兴), Tao Li(李涛). Chin. Phys. B, 2018, 27(1): 010306.
[13] Radiative divertor behavior and physics in Ar seeded plasma on EAST
Jingbo Chen(陈竞博), Yanmin Duan(段艳敏), Zhongshi Yang(杨钟时), Liang Wang(王亮), Kai Wu(吴凯), Kedong Li(李克栋), Fang Ding(丁芳), Hongmin Mao(毛红敏), Jichan Xu(许吉禅), Wei Gao(高伟), Ling Zhang(张凌), Jinhua Wu(吴金华), Guang-Nan Luo(罗广南), EAST Team. Chin. Phys. B, 2017, 26(9): 095205.
[14] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[15] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
No Suggested Reading articles found!