Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 064703    DOI: 10.1088/1674-1056/ab8372
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators

Borui Zheng(郑博睿)1, Ming Xue(薛明)2, Chang Ge(葛畅)1
1 School of Automation and Information Engineering, Xi'an University of Technology, Xi'an 710048, China;
2 School of Aeronautics, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  Plasma control of forebody asymmetric vortices is mostly achieved by means of dielectric barrier discharge (DBD) plasma actuators. However, DBD actuators suffer from some disadvantages such as a weak induced body force, a single-direction induced jet, and an unclear control mechanism. We carry out wind tunnel experiments involving the forebody vortex control of a slender body at high angles of attack using an innovative extended DBD actuator, which has a stronger capacity to induce an electric wind than a DBD actuator. Through synchronous measurements of the pressure distribution and particle image velocimetry (PIV), the spatiotemporal evolution of the dynamic interactions between plasma-actuation-induced vortices and forebody asymmetric vortices is analyzed. The influence of plasma discharge on the boundary layer separation around a slender body and the spatial topological structures of asymmetric vortices are further surveyed, as the optimized actuation parameters. Extended DBD actuators are found to be more capable of controlling asymmetric vortices than DBD actuators, and a linear proportionality of the sectional lateral force versus the duty ratio is achieved. There exists an optimal normalized reduced frequency (f+=2πfpd/U=2.39) for asymmetric vortex control under the present experimental conditions. The research results can provide technical guidance for the control and reuse of forebody asymmetric vortices.
Keywords:  plasma flow control      dielectric barrier discharge      forebody asymmetric vortex  
Received:  27 January 2020      Revised:  27 February 2020      Published:  05 June 2020
PACS:  47.32.Ff (Separated flows)  
  47.85.Gj (Aerodynamics)  
  52.80.-s (Electric discharges)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51607188 and 61971345), the Foundation for Key Laboratories of National Defense Science and Technology, China (Grant No. 614220202011801), the Natural Science Basic Research Program of Shaanxi Province of China (Grant No. 2019JM-393), and Xi'an Municipal Science and Technology Project of China (Grant No. 201805037YD15CG21(28)).
Corresponding Authors:  Borui Zheng     E-mail:  narcker@xaut.edu.cn

Cite this article: 

Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅) Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators 2020 Chin. Phys. B 29 064703

[1] Williams D R 1997 AIAA (A review of forebody vortex control scenarios in 28th Fluid Dynamics Conference, 29 June-2 July 1997) p. 29
[2] Bridges D H 2010 Prog. Aerosp. Sci. 46 62
[3] Ericsson L E 1992 J. Aircraft 29 1086
[4] Wang Q T, Cheng K M, Gu Y S and Li Z Q 2018 Phys. Fluids 30 024102
[5] Zhai J, Zhang W W and Wang H L 2017 Acta Aerodynamica Sin. 35 354 (in Chinese)
[6] Fagley C, Porter C and McLaughlin T 2014 AIAA J. 52 2891
[7] Maslov A A, Zanin B Y and Sidorenko A A 2004 AIAA 2004 843 (42nd AIAA Aerospace Sciences Meeting and Exhibit, 5-8 January 2004 Reno, Nevada)
[8] Wang J L, Li H X, Liu F, Luo S J 2010 AIAA 2010 1087 (48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, 4-7 January 2010 Orlando, Florida)
[9] Zheng B R, Ke X Z, Ge C, Zhu Y F, Wu Y, Liu F and Luo S J 2020 AIAA J. 58 733
[10] Zheng B R, Gao C, Li Y B, Feng L and Luo S J 2013 Plasma Sci. Technol. 15 350
[11] Long Y X, Li H X, Meng X S and Hu H Y 2018 Appl. Phys. Lett. 112 014101
[12] Liu F, Luo S J, Gao C, Meng X S, Hao J N, Wang J L and Zhao Z J 2008 AIAA J. 46 2969
[13] Zheng B R, Gao C, Li Y B, Feng L and Luo S J 2012 Plasma Sci. Technol. 14 58
[14] Lombardi A J, Bowles P O and Corke T C 2013 AIAA J. 51 1130
[15] Meng X S, Long Y X, Wang J L, Liu F and Luo S J 2018 Phys. Fluids 30 024101
[16] Zheng B R, Xue M and Ge C 2020 Chin. Phys. B 29 024704
[17] Michael J J and David B G 2017 Plasma Sources Sci. Technol. 26 103002
[18] Benard N and Moreau E 2014 Exp. Fluids 55 1846
[19] Zheng B R, Xue M, Ke X Z, Ge C, Wang Y S, Liu F and Luo S J 2019 AIAA J. 57 467
[20] Sekimoto S, Nonomura T and Fujii K AIAA J. 55 1385
[21] Vukasinovic B and Glezer A 2006 AIAA 2016 3227 (36th AIAA Fluid Dynamics Conference and Exhibit, 5-8 June 2006 San Francisco, California)
[1] Electrical modeling of dielectric barrier discharge considering surface charge on the plasma modified material
Hong-Lu Guan(关弘路), Xiang-Rong Chen(陈向荣), Tie Jiang(江铁), Hao Du(杜浩), Ashish Paramane, Hao Zhou(周浩). Chin. Phys. B, 2020, 29(7): 075204.
[2] Dynamic evolution of vortex structures induced bytri-electrode plasma actuator
Bo-Rui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(2): 024704.
[3] Dynamic stall control over an airfoil by NS-DBD actuation
He-Sen Yang(杨鹤森), Guang-Yin Zhao(赵光银)†, Hua Liang(梁华)‡, and Biao Wei(魏彪). Chin. Phys. B, 2020, 29(10): 105203.
[4] Influence of vibration on spatiotemporal structure of the pattern in dielectric barrier discharge
Rong Han(韩蓉), Li-Fang Dong(董丽芳), Jia-Yu Huang(黄加玉), Hao-Yang Sun(孙浩洋), Bin-Bin Liu(刘彬彬), Yan-Lin Mi(米彦霖). Chin. Phys. B, 2019, 28(7): 075204.
[5] Effect of actuating frequency on plasma assisted detonation initiation
Si-Yin Zhou(周思引), Xue-Ke Che(车学科), Di Wang(王迪), Wan-Sheng Nie(聂万胜). Chin. Phys. B, 2018, 27(2): 025208.
[6] UAV flight test of plasma slats and ailerons with microsecond dielectric barrier discharge
Zhi Su(苏志), Jun Li(李军), Hua Liang(梁华), Bo-Rui Zheng(郑博睿), Biao Wei(魏彪), Jie Chen(陈杰), Li-Ke Xie(谢理科). Chin. Phys. B, 2018, 27(10): 105205.
[7] Modeling and optimization of the multichannel spark discharge
Zhi-Bo Zhang(张志波), Yun Wu(吴云), Min Jia(贾敏), Hui-Min Song(宋慧敏), Zheng-Zhong Sun(孙正中), Ying-Hong Li(李应红). Chin. Phys. B, 2017, 26(6): 065204.
[8] Electric and plasma characteristics of RF discharge plasma actuation under varying pressures
Huimin Song(宋慧敏), Min Jia(贾敏), Di Jin(金迪), Wei Cui(崔巍), Yun Wu(吴云). Chin. Phys. B, 2016, 25(3): 035204.
[9] Spontaneous transition of one-dimensional plasma photonic crystal's orientation in dielectric barrier discharge
Fan Wei-Li, Dong Li-Fang. Chin. Phys. B, 2013, 22(1): 014213.
[10] Simulation of transition from Townsend mode to glow discharge mode in a helium dielectric barrier discharge at atmospheric pressure
Li Xue-Chen, Niu Dong-Ying, Xu Long-Fei, Jia Peng-Ying, Chang Yuan-Yuan. Chin. Phys. B, 2012, 21(7): 075204.
[11] Experimental investigation of nanosecond discharge plasma aerodynamic actuation
Wu Yun,Li Ying-Hong,Jia Min,Liang Hua,Song Hui-Min. Chin. Phys. B, 2012, 21(4): 045202.
[12] Aspects of the upstream region in a plasma jet with dielectric barrier discharge configurations
Li Xue-Chen,Jia Peng-Ying,Yuan-Ning,Chang Yuan-Yuan. Chin. Phys. B, 2012, 21(4): 045204.
[13] Concentric-ring structures in an atmospheric pressure helium dielectric barrier discharge
Shang Wan-Li, Zhang Yuan-Tao, Wang De-Zhen, Sang Chao-Feng, Jiang Shao-En, Yang Jia-Min, Liu Shen-Ye, M. G. Kong. Chin. Phys. B, 2011, 20(1): 015201.
[14] Characterizing uniform discharge in atmospheric helium by numerical modelling
Lü Bo, Wang Xin-Xin, Luo Hai-Yun, Liang Zhuo. Chin. Phys. B, 2009, 18(2): 646-651.
[15] Numerical studies of atmospheric pressure glow discharge controlled by a dielectric barrier between two coaxial electrodes
Zhang Hong-Yan, Wang De-Zhen, Wang Xiao-Gang. Chin. Phys. B, 2007, 16(4): 1089-1096.
No Suggested Reading articles found!