Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 064201    DOI: 10.1088/1674-1056/ab8371
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network

Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿)
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China
Abstract  In this paper, we design a one-dimensional anti-PT-symmetric ring optical waveguide network (1D APTSPROWN). Using the three-material network equation and the generalized Floquet-Bloch theorem, we investigate its photonic mode distribution, and observe weak extremum spontaneous anti-PT-symmetric breaking points (WBPs) and strong extremum spontaneous anti-PT-symmetric breaking points (SBPs). Then the transmission spectrum is obtained by using the three-material network equation and the generalized eigenfunction method. The 1D APTSPROWN is found to generate ultra-strong transmission near SBPs and ultra-weak transmission near WBPs and SBPs, with the maximal and minimal transmissions being 4.08×1012 and 7.08×10-52, respectively. The maximal transmission has the same order of magnitude as the best-reported result. It is not only because the distribution of photonic modes generated by the 1D APTSROWN results in the coupling resonance and anti-resonance, but also because the 1D APTSROWN composed of materials whose real parts of refractive indices are positive and negative has two kinds of phase effects, which results in the resonance and anti-resonance effects in the same kind of photonic modes. This demonstrates that the anti-PT-symmetric and PT-symmetric optical waveguide networks are quite different, which leads to a more in-depth understanding of anti-PT-symmetric and PT-symmetric structures. This work has the potential for paving a new approach to designing single photon emitters, optical amplifiers, and high-efficiency optical energy saver devices.
Keywords:  waveguides      optical materials      metamaterials  
Received:  21 January 2020      Revised:  22 February 2020      Accepted manuscript online: 
PACS:  42.15.Eq (Optical system design)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674107, 61475049, 11775083, 61875057, 61774062, and 61771205), the Natural Science Foundation of Guangdong Province, China (Grant No. 2015A030313374), and the Special Funds for the Cultivation of Guangdong College Students' Scientifific and Techonlogical Innovation, China (Grant No. pdjhb0139).
Corresponding Authors:  Xiang-Bo Yang     E-mail:  xbyang@scnu.edu.cn

Cite this article: 

Jie-Feng Xu(许杰锋), Xiang-Bo Yang(杨湘波), Hao-Han Chen(陈浩瀚), Zhan-Hong Lin(林展鸿) Extraordinary propagation characteristics of electromagnetic waves in one-dimensional anti-PT-symmetric ring optical waveguide network 2020 Chin. Phys. B 29 064201

[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[2] Bender C M, Boettcher S and Meisinger P N 1999 J. Math. Phys. 40 2201
[3] El-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Opt. Lett. 32 2632
[4] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
[5] Rüter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
[6] Zheng M C, Christodoulides D N, Fleischmann R and Kottos T 2010 Phys. Rev. A 82 010103
[7] Lin Z, Ramezani H, Eichelkraut T, Kottos T, Cao H and Christodoulides D N 2011 Phys. Rev. Lett. 106 213901
[8] Regensburger A, Bersch C, Miri M A, Onishchukov G, Christodoulides D N and Peschel U 2012 Nature 488 167
[9] Zhu X, Feng L, Zhang P, Yin X and Zhang X 2013 Opt. Lett. 38 2821
[10] Feng L, Zhu X, Yang S, Zhu H, Zhang P, Yin X, Wang Y and Zhang X 2014 Opt. Express 22 1760
[11] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
[12] Zhang Z, Miao P, Sun J, Longhi S, Litchinitser N M and Feng L 2018 ACS Photon. 5 3016
[13] Longhi S 2010 Phys. Rev. A 82 031801
[14] Chong Y D, Ge L and Stone A D 2011 Phys. Rev. Lett. 106 093902
[15] Ge L and Tuereci H E 2013 Phys. Rev. A 88 053810
[16] Yang F, Liu Y and You L 2017 Phys. Rev. A 96 053845
[17] Zhang X, Jiang T and Chan C T 2019 Light-Sci. Appl. 8 88
[18] Wang H, Kong W, Zhang P, Li Z and Zhong D 2019 Appl. Sci.-Basel 9 2738
[19] Peng P, Cao W, Shen C, Qu W, Wen J, Jiang L and Xiao Y 2016 Nat. Phys. 12 1139
[20] Konotop V V and Zezyulin D A 2018 Phys. Rev. Lett. 120 123902
[21] Zhang Z Q, Wong C C, Fung K K, Ho Y L, Chan W L, Kan S C, Chan T L and Cheung N 1998 Phys. Rev. Lett. 81 5540
[22] Dobrzynski L, Akjouj A, Djafari-Rouhani B, Vasseur J O and Zemmouri J 1998 Phys. Rev. B 57 R9388
[23] Wang Z Y and Yang X 2007 Phys. Rev. B 76 235104
[24] Cheung S K, Chan T L, Zhang Z Q and Chan C T 2004 Phys. Rev. B 70 125104
[25] Lu J, Yang X, Zhang G and Cai L 2011 Phys. Lett. A 375 3904
[26] Li M H, Liu Y Y and Zhang Z Q 2000 Phys. Rev. B 61 16193
[27] Yang X, Song H and Liu T C 2013 Phys. Lett. A 377 3048
[28] Wang Y, Yang X, Lu J, Zhang G and Liu C T 2014 Phys. Lett. A 378 1200
[29] Vasseur J O, Djafari-Rouhani B, Dobrzynski L, Akjouj A and Zemmouri J 1999 Phys. Rev. B 59 13446
[30] Mir A, Akjouj A, Vasseur J O, Djafari-Rouhani B, Fettouhi N, El E H, Dobrzynski L and Zemmouri J 2003 J. Phys.: Condens. Matter 15 1593
[31] Stoytchev M and Genack A Z 1997 Phys. Rev. B 55 R8617
[32] Feng L, Xu Y L, Fegadolli W S, Lu M H, Oliveira J E B, Almeida V R and Chen Y F 2013 Nat. Matter. 12 108
[33] Zhi Y, Yang X, Wu J, Du S, Cao P, Deng D and Liu C T 2018 Photon. Res. 6 579
[34] Wu J and Yang X 2017 Opt. Express 25 27724
[35] Liu Y, Hou Z, Hui P M and Sritrakool W 1999 Phys. Rev. B 60 13444
[1] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[2] Hyperbolic metamaterials for high-efficiency generation of circularly polarized Airy beams
Lin Chen(陈林), Huihui Li(李会会), Weiming Hao(郝玮鸣), Xiang Yin(殷祥), Jian Wang(王健). Chin. Phys. B, 2020, 29(8): 084210.
[3] Influences of annealing temperature on properties of Fe2+: ZnSe thin films deposited by electron beam evaporation and their applications to Q-switched fiber laser
Du-Xin Qing(卿杜鑫), Shu-Tong Wang(王树同), Shou-Gui Ning(宁守贵), Wei Zhang(张伟), Xiao-Xu Chen(陈晓旭), Hong Zhang(张弘), Guo-Ying Feng(冯国英), Shou-Huan Zhou(周寿桓). Chin. Phys. B, 2020, 29(5): 054208.
[4] Efficient and multifunctional terahertz polarization control device based on metamaterials
Xiao-Fei Jiao(焦晓飞), Zi-Heng Zhang(张子恒), Yun Xu(徐云), and Guo-Feng Song(宋国峰). Chin. Phys. B, 2020, 29(11): 114209.
[5] Enhanced reflection chiroptical effect of planar anisotropic chiral metamaterials placed on the interface of two media
Xiu Yang(杨秀), Tao Wei(魏涛), Feiliang Chen(陈飞良), Fuhua Gao(高福华), Jinglei Du(杜惊雷)†, and Yidong Hou(侯宜栋)‡. Chin. Phys. B, 2020, 29(10): 107303.
[6] Analysis of elliptical thermal cloak based on entropy generation and entransy dissipation approach
Meng Wang(王梦), Shiyao Huang(黄诗瑶), Run Hu(胡润), Xiaobing Luo(罗小兵). Chin. Phys. B, 2019, 28(8): 087804.
[7] High-performance waveguide-integrated Ge/Si avalanche photodetector with small contact angle between selectively epitaxial growth Ge and Si layers
Xiao-Qian Du(杜小倩), Chong Li(李冲), Ben Li(黎奔), Nan Wang(王楠), Yue Zhao(赵越), Fan Yang(杨帆), Kai Yu(余凯), Lin Zhou(周琳), Xiu-Li Li(李秀丽), Bu-Wen Cheng(成步文), Chun-Lai Xue(薛春来). Chin. Phys. B, 2019, 28(6): 064208.
[8] Three-dimensional thermal illusion devices with arbitrary shape
Xingwei Zhang(张兴伟), Xiao He(何晓), Linzhi Wu(吴林志). Chin. Phys. B, 2019, 28(6): 064403.
[9] Electrically triggered dual-band tunable terahertz metamaterial band-pass filter based on Si3N4-VO2-Si3N4 sandwich
Shuai Zhao(赵帅), Fangrong Hu(胡放荣), Xinlong Xu(徐新龙), Mingzhu Jiang(江明珠), Wentao Zhang(张文涛), Shan Yin(银珊), Wenying Jiang(姜文英). Chin. Phys. B, 2019, 28(5): 054203.
[10] Surface plasmon polariton waveguides with subwavelength confinement
Longkun Yang(杨龙坤), Pan Li(李盼), Hancong Wang(汪涵聪), Zhipeng Li(李志鹏). Chin. Phys. B, 2018, 27(9): 094216.
[11] Contribution of terahertz waves to near-field radiative heat transfer between graphene-based hyperbolic metamaterials
Qi-Mei Zhao(赵启梅), Tong-Biao Wang(王同标), De-Jian Zhang(张德建), Wen-Xing Liu(刘文兴), Tian-Bao Yu(于天宝), Qing-Hua Liao(廖清华), Nian-Hua Liu(刘念华). Chin. Phys. B, 2018, 27(9): 094401.
[12] Reduced graphene oxide as saturable absorbers for erbium-doped passively mode-locked fiber laser
Zhen-Dong Chen(陈振东), Yong-Gang Wang(王勇刚), Lu Li(李璐), Rui-Dong Lv(吕瑞东), Liang-Lei Wei(韦良雷), Si-Cong Liu(刘思聪), Jiang Wang(王江), Xi Wang(王茜). Chin. Phys. B, 2018, 27(8): 084206.
[13] MoS2 saturable absorber prepared by chemical vapor deposition method for nonlinear control in Q-switching fiber laser
Meng-Li Liu(刘孟丽), Yu-Yi OuYang(欧阳毓一), Huan-Ran Hou(侯焕然), Ming Lei(雷鸣), Wen-Jun Liu(刘文军), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2018, 27(8): 084211.
[14] Controlling flexural waves in thin plates by using transformation acoustic metamaterials
Xing Chen(陈幸), Li Cai(蔡力), Ji-Hong Wen(温激鸿). Chin. Phys. B, 2018, 27(5): 057803.
[15] Linear and nonlinear optical analysis on semiorganic L-proline cadmium chloride single crystal
Mohd Anis, M I Baig, S S Hussaini, M D Shirsat, Mohd Shkir, H A Ghramh. Chin. Phys. B, 2018, 27(4): 047801.
No Suggested Reading articles found!