Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 056103    DOI: 10.1088/1674-1056/ab8211
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Bose-Einstein condensates in an eightfold symmetric optical lattice

Zhen-Xia Niu(牛真霞)1, Yong-Hang Tai(邰永航)2, Jun-Sheng Shi(石俊生)2, Wei Zhang(张威)1,3
1 Department of Physics, Renmin University of China, Beijing 100872, China;
2 Yunnan Key Laboratory of Optoelectronic Information Technology, Yunnan Normal University, Kunming 650500, China;
3 Beijing Key Laboratory of Opto-electronic Functional Materials and Micro-nano Devices, Renmin University of China, Beijing 100872, China
Abstract  We investigate the properties of Bose-Einstein condensates (BECs) in a two-dimensional quasi-periodic optical lattice (OL) with eightfold rotational symmetry by numerically solving the Gross-Pitaevskii equation. In a stationary external harmonic trapping potential, we first analyze the evolution of matter-wave interference pattern from periodic to quasi-periodic as the OL is changed continuously from four-fold periodic to eight-fold quasi-periodic. We also investigate the transport properties during this evolution for different interatomic interaction and lattice depth, and find that the BEC crosses over from ballistic diffusion to localization. Finally, we focus on the case of eightfold symmetric lattice and consider a global rotation imposed by the external trapping potential. The BEC shows vortex pattern with eightfold symmetry for slow rotation, becomes unstable for intermediate rotation, and exhibits annular solitons with approximate axial symmetry for fast rotation. These results can be readily demonstrated in experiments using the same configuration as in Phys. Rev. Lett. 122 110404 (2019).
Keywords:  quasicrystals      Bose-Einstein condensates      quantum transport      vortex and soliton     
Received:  04 February 2020      Published:  05 May 2020
PACS:  61.44.Br (Quasicrystals)  
  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  67.85.Hj (Bose-Einstein condensates in optical potentials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11434011, 11522436, and 11774425), the National Key R&D Program of China (Grants No. 2018YFA0306501), the Beijing Natural Science Foundation, China (Grant No. Z180013), and the Research Funds of Renmin University of China (Grants Nos. 16XNLQ03 and 18XNLQ15).
Corresponding Authors:  Wei Zhang     E-mail:  wzhangl@ruc.edu.cn

Cite this article: 

Zhen-Xia Niu(牛真霞), Yong-Hang Tai(邰永航), Jun-Sheng Shi(石俊生), Wei Zhang(张威) Bose-Einstein condensates in an eightfold symmetric optical lattice 2020 Chin. Phys. B 29 056103

[1] Hiramoto H and Kohmoto M 1989 Phys. Rev. Lett. 62 2714
[2] Kraus Y E, Ringel Z and Zilberberg O 2013 Phys. Rev. Lett. 111 226401
[3] Ahn S J, Moon P, Kim T H, Kim H W, Shin H C, Kim E H, Cha H W, Kahng S J, Kim P, Koshino M, Son Y W, Yang C W and Ahn J R 2018 Science 361 782
[4] Wang J K, Zhang W and Sáde Melo C A R 2016 Chin. Phys. B 25 087401
[5] Bindi L, Steinhardt P J, Yao N and Lu P J 2009 Science 324 1306
[6] Steurer W 2009 Z. Kristallogr. Cryst. Mater. 219 391
[7] Gong P, Hu C Z, Zhou X, Wang A J and Miao L 2006 Chin. Phys. 15 2065
[8] Bloch I 2005 Nat. Phys. 1 23
[9] Greiner M and Fölling S 2008 Nature 453 736
[10] Oosten D V, Straten P V and Stoof H T C 2001 Phys. Rev. A 63 053601
[11] Schreiber M, Hodgman S S, Bordia P, Lüschen H P, Fischer M H, Vosk R, Altman E, Schneider U and Bloch I 2015 Science 349 842
[12] Zheng W and Cooper N R 2018 Phys. Rev. A 97 021601(R)
[13] Brown P T, Mitra D, Guardado-Sanchez E, Nourafkan R, Reymbaut A, Hébert C D, Bergeron S, Tremblay A M S, Kokalj J, Huse D A, Schauß P and Bakr W S 2019 Science 363 379
[14] Guidoni L, TrichéC, Verkerk P and Grynberg G 1997 Phys. Rev. Lett. 79 3363
[15] Sanchez-Palencia L and Santos L 2005 Phys. Rev. A 72 053607
[16] Jagannathan A and Duneau M 2013 Euro. Phys. Lett. 104 66003
[17] Lin C, Steinhardt P J and Torquato S 2018 Phys. Rev. Lett. 120 247401
[18] Viebahn K, Sbroscia M, Carter E, Yu J C and Schneider U 2019 Phys. Rev. Lett. 122 110404
[19] Wang D S, Hu X H, Hu J P and Liu W M 2010 Phys. Rev. A 81 025604
[20] Wang D S, Hu X H, Hu J P and Liu W M 2010 Phys. Rev. A 82 023612
[21] Wang D S, Song S W, Xiong B and Liu W M 2011 Phys. Rev. A 84 053607
[22] Wang D S, Shi Y R, Feng W X and Wen L 2017 Physica D 351 30
[23] Wouters M, Tempere J and Devreese J T 2003 Phys. Rev. A 68 053603
[24] Haller E, Mark M J, Hart R, Danzl J G, Reichsollner L, Melezhik V, Schmelcher P and Nägerl H C 2010 Phys. Rev. Lett. 104 153203
[25] Zhang W and Zhang P 2011 Phys. Rev. A 83 053615
[26] Wang J K, Yi W and Zhang W 2016 Front. Phys. 11 118102
[27] Petrov D S and Shlyapnikov G V 2001 Phys. Rev. A 64 012706
[28] Olshanii M, Perrin H and Lorent V 2010 Phys. Rev. Lett. 105 095302
[29] Hu H, Mulkerin B C, Toniolo U, He L Y and Liu X J 2019 Phys. Rev. Lett. 122 070401
[30] Bao W Z and Du Q 2004 SIAM J. Sci. Comput. 25 1674
[31] Yuan H Q and Zhong J X 1998 Acta. Phys. Sin. 7 196 (in Chinese)
[32] Billy J, Josse V, Zuo Z C, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L and Bouye P 2008 Nature 453 891
[33] Choi J Y, Hild S, Zeiher J, Schauß P, Rubio-Abadal A, Yefsah T, Khemani V, Huse D A, Bloch I and Gross C 2016 Science 352 1547
[34] Fujiwara C J, Singh K, Geiger Z A, Senaratne R, Rajagopal S V, Lipatov M and Weld D M 2019 Phys. Rev. Lett. 122 010402
[35] Ben D M, Peik E, Reichel J, Castin Y and Salomon C 1996 Phys. Rev. Lett. 76 4508
[36] Wilkinson S R, Bharucha C F, Madison K W, Niu Q and Raizen M G 1996 Phys. Rev. Lett. 76 4512
[37] Anderson B P and Kasevich M A 1998 Science 282 1686
[38] Roati G, Mirandes E D, Ferlaino F, Ott H, Modugno G and Inguscio M 2004 Phys. Rev. Lett. 92 230402
[39] Diez E, Dominguez-Adame F, Macia E and Sanchez A 1996 Phys. Rev. B 54 16792
[40] Kasamatsu K and Tsubota M 2006 Phys. Rev. Lett. 97 240404
[41] Liu C F and Liu W M 2012 Phys. Rev. A 86 033602
[42] Tung S, Schweikhard V and Cornell E A 2006 Phys. Rev. Lett. 97 240402
[43] Bhat R, Krämer M, Cooper J and Holland M J 2007 Phys. Rev. A 76 043601
[44] Antoine X and Duboscq R 2014 Comput. Phys. Commu. 185 2969
[45] Sakaguchi H and Malomed B A 2006 Phys. Rev. E 74 026601
[46] Sakaguchi H and Malomed B A 2009 Phys. Rev. A 79 043606
[1] A polaron theory of quantum thermal transistor in nonequilibrium three-level systems
Chen Wang(王晨), Da-Zhi Xu(徐大智). Chin. Phys. B, 2020, 29(8): 080504.
[2] Simple and robust method for rapid cooling of 87Rb to quantum degeneracy
Chun-Hua Wei(魏春华), Shu-Hua Yan(颜树华). Chin. Phys. B, 2020, 29(6): 064208.
[3] Geometric phase of an open double-quantum-dot system detected by a quantum point contact
Qian Du(杜倩), Kang Lan(蓝康), Yan-Hui Zhang(张延惠), Lu-Jing Jiang(姜露静). Chin. Phys. B, 2020, 29(3): 030302.
[4] Coulomb blockade and hopping transport behaviors of donor-induced quantum dots in junctionless transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Fu-Hua Yang(杨富华). Chin. Phys. B, 2020, 29(3): 038104.
[5] Interference properties of two-component matter wave solitons
Yan-Hong Qin(秦艳红), Yong Wu(伍勇), Li-Chen Zhao(赵立臣), Zhan-Ying Yang(杨战营). Chin. Phys. B, 2020, 29(2): 020303.
[6] Quantized vortices in spinor Bose–Einstein condensates with time–space modulated interactions and stability analysis
Yu-Qin Yao(姚玉芹), Ji Li(李吉). Chin. Phys. B, 2020, 29(10): 103701.
[7] Anti-plane problem of nano-cracks emanating from a regular hexagonal nano-hole in one-dimensional hexagonal piezoelectric quasicrystals
Dongsheng Yang(杨东升), Guanting Liu(刘官厅). Chin. Phys. B, 2020, 29(10): 104601.
[8] Lattice configurations in spin-1 Bose–Einstein condensates with the SU(3) spin–orbit coupling
Ji-Guo Wang(王继国), Yue-Qing Li(李月晴), Yu-Fei Dong(董雨菲). Chin. Phys. B, 2020, 29(10): 100304.
[9] Unifying quantum heat transfer and superradiant signature in a nonequilibrium collective-qubit system:A polaron-transformed Redfield approach
Xu-Min Chen(陈许敏), Chen Wang(王晨). Chin. Phys. B, 2019, 28(5): 050502.
[10] Influence of dopant concentration on electrical quantum transport behaviors in junctionless nanowire transistors
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Yang-Yan Guo(郭仰岩), Ya-Mei Dou(窦亚梅), Fu-Hua Yang(杨富华). Chin. Phys. B, 2018, 27(8): 088106.
[11] Electronic transport properties of Co cluster-decorated graphene
Chao-Yi Cai(蔡超逸), Jian-Hao Chen(陈剑豪). Chin. Phys. B, 2018, 27(6): 067304.
[12] Trapped Bose-Einstein condensates with quadrupole-quadrupole interactions
An-Bang Wang(王安邦), Su Yi(易俗). Chin. Phys. B, 2018, 27(12): 120307.
[13] Valley-polarized pumping current in zigzag graphene nanoribbons with different spatial symmetries
Zhizhou Yu(俞之舟), Fuming Xu(许富明). Chin. Phys. B, 2018, 27(12): 127203.
[14] Interaction between infinitely many dislocations and a semi-infinite crack in one-dimensional hexagonal quasicrystal
Guan-Ting Liu(刘官厅), Li-Ying Yang(杨丽英). Chin. Phys. B, 2017, 26(9): 094601.
[15] Tunable ground-state solitons in spin-orbit coupling Bose-Einstein condensates in the presence of optical lattices
Huafeng Zhang(张华峰), Fang Chen(陈方), Chunchao Yu(郁春潮), Lihui Sun(孙利辉), Dahai Xu(徐大海). Chin. Phys. B, 2017, 26(8): 080304.
No Suggested Reading articles found!