Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 054302    DOI: 10.1088/1674-1056/ab8210
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Pulling force of acoustic-vortex beams on centered elastic spheres based on the annular transducer model

Yuzhi Li(李禹志)1, Qingdong Wang(王青东)2, Gepu Guo(郭各朴)1, Hongyan Chu(褚红燕)1, Qingyu Ma(马青玉)1, Juan Tu(屠娟)3, Dong Zhang(章东)3
1 School of Physics and Technology, Nanjing Normal University, Nanjing 210023, China;
2 College of Ocean Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China;
3 Institute of Acoustics, Nanjing University, Nanjing 210093, China
Abstract  To solve the difficulty of generating an ideal Bessel beam, an simplified annular transducer model is proposed to study the axial acoustic radiation force (ARF) and the corresponding negative ARF (pulling force) exerted on centered elastic spheres for acoustic-vortex (AV) beams of arbitrary orders. Based on the theory of acoustic scattering, the axial distributions of the velocity potential and the ARF for AV beams of different orders generated by the annular transducers with different physical sizes are simulated. It is proved that the pulling force can be generated by AV beams of arbitrary orders with multiple axial regions. The pulling force is more likely to exert on the sphere with a smaller k0a (product of the wave number and the radius) for the AV beam with a bigger topological charge due to the strengthened off-axis acoustic scattering. The pulling force decreases with the increase of the axial distance for the sphere with a bigger k0a. More pulling force areas with wider axial regions can be formed by AV beams using a bigger-sized annular transducer. The theoretical results demonstrate the feasibility of generating the pulling force along the axes of AV beams using the experimentally applicable circular array of planar transducers, and suggest application potentials for multi-position stable object manipulations in biomedical engineering.
Keywords:  acoustic radiation force      pulling force      acoustic-vortex beams      annular transducer model      acoustic scattering  
Received:  03 February 2020      Revised:  21 February 2020      Published:  05 May 2020
PACS:  43.25.Qp (Radiation pressure?)  
  43.60.Fg (Acoustic array systems and processing, beam-forming)  
  43.38.Hz (Transducer arrays, acoustic interaction effects in arrays)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11934009, 11974187, and 11604156).
Corresponding Authors:  Qingyu Ma     E-mail:  maqingyu@njnu.edu.cn

Cite this article: 

Yuzhi Li(李禹志), Qingdong Wang(王青东), Gepu Guo(郭各朴), Hongyan Chu(褚红燕), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东) Pulling force of acoustic-vortex beams on centered elastic spheres based on the annular transducer model 2020 Chin. Phys. B 29 054302

[1] Hefner B T and Marston P L 1999 J. Acoust. Soc. Am. 106 3313
[2] Zhang L and Marston P L 2011 Phys. Rev. E 84 065601
[3] Marchiano R and Thomas J L 2005 Phys. Rev. E 71 066616
[4] Lekner J 2006 J. Acoust. Soc. Am. 120 3475
[5] Marchiano R, Coulouvrat F, Ganjehi L and Thomas J L 2008 Phys. Rev. E 77 016605
[6] Demore C E M, Yang Z, Volovick A, Cochran S, MacDonald M P and Spalding G C 2012 Phys. Rev. Lett. 108 194301
[7] Volke-Sepúlveda K, Santillán A O and Boullosa R R 2008 Phys. Rev. Lett. 100 024302
[8] Santillán A O and Volke-Sepúlveda K 2009 Am. J. Phys. 77 209
[9] Li W, Dai S, Ma Q, Guo G and Ding H 2018 Chin. Phys. B 27 024301
[10] Kang S T and Yeh C K 2010 IEEE Trans. Ultrason. Ferr. Freq. Contr. 57 1451
[11] Baresch D, Thomas J L and Marchiano R 2013 J. Appl. Phys. 113 184901
[12] Skeldon K D, Wilson C, Edgar M and Padgett M J 2008 New J. Phys. 10 013018
[13] Courtney C R P, Demore C E M, Wu H, Grinenko A, Wilcox P D, Cochran S and Drinkwater B W 2014 Appl. Phys. Lett. 104 154103
[14] Lee J, Ha K and Shung K K 2005 J. Acoust. Soc. Am. 117 3273
[15] Sapozhnikov O A and Bailey M R 2013 J. Acoust. Soc. Am. 133 661
[16] Mitri F G 2008 Ann. Phys. 323 1604
[17] Mitri F G 2015 IEEE Trans. Ultrason. Ferr. Freq. Contr. 62 1827
[18] Silva G T and Baggio A L 2015 Ultrasonics 56 449
[19] Nye J F and Berry M V 1974 Proc. R. Soc. Lond. A 336 165
[20] Marston P L 2006 J. Acoust. Soc. Am. 120 3518
[21] Marston P L 2007 J. Acoust. Soc. Am. 122 3162
[22] Marston P L 2009 J. Acoust. Soc. Am. 125 3539
[23] Zhang L and Marston P L 2011 Phys. Rev. E 84 035601
[24] Zhang L and Marston P L 2012 J. Acoust. Soc. Am. 131 EL329
[25] Mitri F G 2009 J. Phys. A: Math. Theor. 42 245202
[26] Mitri F G 2009 Ultrasonics 49 794
[27] Mitri F G 2009 IEEE Trans. Ultrason. Ferr. Freq. Contr. 56 1059
[28] Baresch D, Thomas J L and Marchiano R 2016 Phys. Rev. Lett. 116 024301
[29] McGloin D and Dholakia K 2005 Contemp. Phys. 46 15
[30] Cheng J 2011 Principles of acoustics (Beijing: Science Press) pp. 247-270
[31] Zang Y, Qiao Y, Liu J and Liu X 2019 Chin. Phys. B 28 034301
[32] Jackson J D 1999 Classical electrodynamics, 3rd edn. (New York: Wiley) pp. 96-101
[33] Arfken G B, Weber H J and Harris F E 2013 Mathematical methods for physicists (Boston: Academic Press) pp. 715-736
[34] Wang H, Liu X, Gao S, Cui J, Liu J, He A and Zhang G 2018 Chin. Phys. B 27 034302
[35] Wang Q, Li Y, Ma Q, Guo G, Tu J and Zhang D 2018 J. Appl. Phys. 123 034901
[36] Yang L, Ma Q, Tu J and Zhang D 2013 J. Appl. Phys. 113 154904
[37] Zheng H, Gao L, Ma Q, Dai Y and Zhang D 2014 J. Appl. Phys. 115 084909
[38] Li Y, Guo G, Ma Q, Tu J and Zhang D 2017 J. Appl. Phys. 121 164901
[39] Li Y, Guo G, Tu J, Ma Q, Guo X, Zhang D and Sapozhnikov O A 2018 Appl. Phys. Lett. 112 254101
[40] Gao L, Zheng H, Ma Q, Tu J and Zhang D 2014 J. Appl. Phys. 116 024905
[1] Acoustic radiation force and torque on a lossless eccentric layered fluid cylinder
F G Mitri. Chin. Phys. B, 2020, 29(11): 114302.
[2] Dielectric or plasmonic Mie object at air-liquid interface: The transferred and the traveling momenta of photon
M R C Mahdy, Hamim Mahmud Rivy, Ziaur Rahman Jony, Nabila Binte Alam, Nabila Masud, Golam Dastegir Al Quaderi, Ibraheem Muhammad Moosa, Chowdhury Mofizur Rahman, M Sohel Rahman. Chin. Phys. B, 2020, 29(1): 014211.
[3] Axial acoustic radiation force on a fluid sphere between two impedance boundaries for Gaussian beam
Yuchen Zang(臧雨宸), Yupei Qiao(乔玉配), Jiehui Liu(刘杰惠), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2019, 28(3): 034301.
[4] Acoustic radiation force on a multilayered sphere in a Gaussian standing field
Haibin Wang(汪海宾), Xiaozhou Liu(刘晓宙), Sha Gao(高莎), Jun Cui(崔骏), Jiehui Liu(刘杰惠), Aijun He(何爱军), Gutian Zhang(张古田). Chin. Phys. B, 2018, 27(3): 034302.
[5] Acoustic radiation force induced by two Airy-Gaussian beams on a cylindrical particle
Sha Gao(高莎), Yiwei Mao(毛一葳), Jiehui Liu(刘杰惠), Xiaozhou Liu(刘晓宙). Chin. Phys. B, 2018, 27(1): 014302.
[6] Acoustic scattering from a submerged cylindrical shell coated with locally resonant acoustic metamaterials
Li Li, Wen Ji-Hong, Cai Li, Zhao Hong-Gang, Wen Xi-Sen. Chin. Phys. B, 2013, 22(1): 014301.
[7] Finite element modeling of acoustic scattering from an encapsulated microbubble near rigid boundary
Huang Bei, Zhang Yan-Li, Zhang Dong, Gong Xiu-Fen. Chin. Phys. B, 2010, 19(5): 054302.
No Suggested Reading articles found!