Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 058104    DOI: 10.1088/1674-1056/ab8203
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction

Bao Lei(雷宝)1, Yu-Yang Zhang(张余洋)1,2, Shi-Xuan Du(杜世萱)1,2,3
1 Institute of Physics and University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100190, China;
2 CAS Center for Excellence in Topological Quantum Computation, Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted considerable attention because of their unique properties and great potential in nano-technology applications. Great efforts have been devoted to fabrication of novel structured TMD monolayers by modifying their pristine structures at the atomic level. Here we propose an intriguing structured 1T-PtTe2 monolayer as hydrogen evolution reaction (HER) catalyst, namely, Pt4Te7, using first-principles calculations. It is found that Pt4Te7 is a stable monolayer material verified by the calculation of formation energy, phonon dispersion, and ab initio molecular dynamics simulations. Remarkably, the novel structured void-containing monolayer exhibits superior catalytic activity toward HER compared with the pristine one, with a Gibbs free energy very close to zero (less than 0.07 eV). These features indicate that Pt4Te7 monolayer is a high-performance HER catalyst with a high platinum utilization. These findings open new perspectives for the functionalization of 2D TMD materials at an atomic level and its application in HER catalysis.
Keywords:  first-principles calculations      structured PtTe2 monolayer      void-containing materials      HER catalyst  
Received:  05 January 2020      Revised:  25 February 2020      Published:  05 May 2020
PACS:  81.16.Hc (Catalytic methods)  
  31.15.A- (Ab initio calculations)  
  68.65.-k (Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties)  
  14.60.Cd (Electrons (including positrons))  
Fund: Project supported by the National Key R&D Program of China (Grant Nos. 2016YFA0202300, 2018YFA0305800, and 2019YFA0308500), the National Natural Science Foundation of China (Grant Nos. 61888102, 51872284, and 51922011), and the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB30000000).
Corresponding Authors:  Shi-Xuan Du     E-mail:  sxdu@iphy.ac.cn

Cite this article: 

Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱) Prediction of structured void-containing 1T-PtTe2 monolayer with potential catalytic activity for hydrogen evolution reaction 2020 Chin. Phys. B 29 058104

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Wang Q H, Kalantar-Zadeh K, Kis A, Coleman J N and Strano M S 2012 Nat. Nanotechnol. 7 699
[3] Miro P, Audiffred M and Heine T 2014 Chem. Soc. Rev. 43 6537
[4] Novoselov K S, Mishchenko A, Carvalho A and Castro Neto A H 2016 Science 353 aac9439
[5] Li E, Zhang R Z, Li H, Liu C, Li G, Wang J O, Qian T, Ding H, Zhang Y Y, Du S X, Lin X and Gao H J 2018 Chin. Phys. B 27 086804
[6] Zhao Y Q, Ma Q R, Liu B, Yu Z L, Yang J and Cai M Q 2018 Nanoscale 10 8677
[7] Liao C S, Zhao Q Q, Zhao Y Q, Yu Z L, Zhou H, He P B, Yang J L and Cai M Q 2019 J. Phys. Chem. Solids 135 109060
[8] Yang D J, Du Y H, Zhao Y Q, Yu Z L and Cai M Q 2019 Physica Status Solidi B 256 1800540
[9] Guo G Y and Liang W Y 1986 J. Phys. C: Solid State Phys. 19 995
[10] Dai D, Koo H J, Whangbo M H, Soulard C, Rocquefelte X and Jobic S 2003 J. Solid State Chem. 173 114
[11] Chia X, Adriano A, Lazar P, Sofer Z, Luxa J and Pumera M 2016 Adv. Funct. Mater. 26 4306
[12] Wang Y, Li L, Yao W, Song S, Sun J T, Pan J, Ren X, Li C, Okunishi E, Wang Y Q, Wang E, Shao Y, Zhang Y Y, Yang H-t, Schwier E F, Iwasawa H, Shimada K, Taniguchi M, Cheng Z, Zhou S, Du S, Pennycook S J, Pantelides S T and Gao H J 2015 Nano Lett. 15 4013
[13] Zhao Y, Qiao J, Yu P, Hu Z, Lin Z, Lau S P, Liu Z, Ji W and Chai Y 2016 Adv. Mater 28 2399
[14] Wang Z, Li Q, Besenbacher F and Dong M 2016 Adv. Mater. 28 10224
[15] Li L, Wang W, Chai Y, Li H, Tian M and Zhai T 2017 Adv. Funct. Mater. 27 1701011
[16] Yao W, Wang E, Huang H, Deng K, Yan M, Zhang K, Miyamoto K, Okuda T, Li L, Wang Y, Gao H, Liu C, Duan W and Zhou S 2017 Nat. Commun. 8 14216
[17] Yan M, Huang H, Zhang K, Wang E, Yao W, Deng K, Wan G, Zhang H, Arita M, Yang H, Sun Z, Yao H, Wu Y, Fan S, Duan W and Zhou S 2017 Nat Commun. 8 257
[18] Fu L, Hu D, Mendes R G, Rummeli M H, Dai Q, Wu B, Fu L and Liu Y 2018 ACS Nano 12 9405
[19] Jin Y J, Wang R, Zhao J Z, Du Y P, Zheng C D, Gan L Y, Liu J F, Xu H and Tong S Y 2017 Nanoscale 9 13112
[20] Wang Y, Li Y and Heine T 2018 J. Am. Chem. Soc. 140 12732
[21] Zhang X, Lai Z, Ma Q and Zhang H 2018 Chem. Soc. Rev. 47 3301
[22] Shi W, Li G and Wang Z 2019 J. Phys. Chem. C 123 12261
[23] Wu Q, Wei W, Lv X, Huang B and Dai Y 2019 J. Phys. Chem. C 123 11791
[24] Tao L, Zhang Y Y, Sun J, Du S and Gao H J 2018 Chin. Phys. B 27 076104
[25] Yang S Z, Gong Y, Manchanda P, Zhang Y Y, Ye G, Chen S, Song L, Pantelides S T, Ajayan P M, Chisholm M F and Zhou W 2018 Adv. Mater. 30 1803477
[26] Zhao X, Fu D, Ding Z, Zhang Y Y, Wan D, Tan S J R, Chen Z, Leng K, Dan J, Fu W, Geng D, Song P, Du Y, Venkatesan T, Pantelides S T, Pennycook S J, Zhou W and Loh K P 2018 Nano Lett. 18 482
[27] Tsai C, Chan K, Norskov J K and Abild-Pedersen F 2015 Surf. Sci. 640 133
[28] Wang H, Tsai C, Kong D, Chan K, Abild-Pedersen F, Norskov J K and Cui Y 2015 Nano Res. 8 566
[29] Li G, Zhang D, Qiao Q, Yu Y, Peterson D, Zafar A, Kumar R, Curtarolo S, Hunte F, Shannon S, Zhu Y, Yang W and Cao L 2016 J. Am. Chem. Soc. 138 16632
[30] Zhang Y, Chen X, Huang Y, Zhang C, Li F and Shu H 2017 J. Phys. Chem. C 121 1530
[31] Liu C, Dai Z, Zhang J, Jin Y, Li D and Sun C 2018 J. Phys. Chem. C 122 19051
[32] Jaramillo T F, Jorgensen K P, Bonde J, Nielsen J H, Horch S and Chorkendorff I 2007 Science 317 100
[33] Hinnemann B, Moses P G, Bonde J, Jorgensen K P, Nielsen J H, Horch S, Chorkendorff I and Norskov J K 2005 J. Am. Chem. Soc. 127 5308
[34] Li H, Tsai C, Koh A L, Cai L, Contryman A W, Fragapane A H, Zhao J, Han H S, Manoharan H C, Abild-Pedersen F, Norskov J K and Zheng X 2016 Nat. Mater. 15 48
[35] Xie J, Zhang H, Li S, Wang R, Sun X, Zhou M, Zhou J, Lou X W and Xie Y 2013 Adv. Mater. 25 5807
[36] Lin Z, Carvalho B R, Kahn E, Lv R, Rao R, Terrones H, Pimenta M A and Terrones M 2016 2D Materials 3 022002
[37] Gao J, Cheng Y, Tian T, Hu X, Zeng K, Zhang G and Zhang Y W 2017 ACS Omega 2 8640
[38] Politano A, Chiarello G, Kuo C N, Lue C S, Edla R, Torelli P, Pellegrini V and Boukhvalov D W 2018 Adv. Funct. Mater. 28 1706504
[39] Norskov J K, Bligaard T, Logadottir A, Kitchin J R, Chen J G, Pandelov S and Stimming U 2005 J. Electrochem. Soc. 152 J23
[40] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[41] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[42] Hafner J 2008 J. Comput. Chem. 29 2044
[43] Baroni S, Gironcoli S d, Corso A D and Giannozzi P 2001 Rewiews Mod. Phys. 73 515
[44] Togo A, Oba F and Tanaka I 2008 Phys. Rev. B 78 134106
[45] Martyna G J, Klein M L and Tuckerman M 1992 J. Chem. Phys. 97 2635
[46] Cenzual K, Gelato L M, Penzo M and Parthe E 1990 Z. Kristallogr 193 217
[47] Rasmussen F A and Thygesen K S 2015 J. Phys. Chem. C 119 13169
[48] Wang Y, Xiao J, Zhu H, Li Y, Alsaid Y, Fong K Y, Zhou Y, Wang S, Shi W, Wang Y, Zettl A, Reed E J and Zhang X 2017 Nature 550 487
[49] Zhou J, Lin J, Huang X, Zhou Y, Chen Y, Xia J, Wang H, Xie Y, Yu H, Lei J, Wu D, Liu F, Fu Q, Zeng Q, Hsu C H, Yang C, Lu L, Yu T, Shen Z, Lin H, Yakobson B I, Liu Q, Suenaga K, Liu G and Liu Z 2018 Nature 556 355
[50] Zhang Y Y, Mishra R, Pennycook T J, Borisevich A Y, Pennycook S J and Pantelides S T 2015 Adv. Mater. Interfaces 2 1500344
[1] A first-principles study on zigzag phosphorene nanoribbons terminated by transition metal atoms
Shuai Yang(杨帅), Zhiyong Wang(王志勇), Xueqiong Dai(戴学琼), Jianrong Xiao(肖剑荣), and Mengqiu Long(龙孟秋). Chin. Phys. B, 2021, 30(2): 027305.
[2] Structure prediction, electronic, and mechanical properties of alkali metal MB12 ( M= Be, Mg, Ca, Sr) from first principles
Chun-Ying Pu(濮春英), Rong-Mei Yu(于荣梅), Ting Wang(王婷), Zhen-Yan X\"ue(薛振彦), Yong-Sheng Zhu(朱永胜), and Da-Wei Zhou(周大伟). Chin. Phys. B, 2021, 30(1): 017102.
[3] Novel structures and mechanical properties of Zr2N: Ab initio description under high pressures
Minru Wen(文敏儒), Xing Xie(谢兴), Zhixun Xie(谢植勋), Huafeng Dong(董华锋), Xin Zhang(张欣), Fugen Wu(吴福根), and Chong-Yu Wang(王崇愚). Chin. Phys. B, 2021, 30(1): 016403.
[4] Effects of Re, Ta, and W in [110] (001) dislocation core of γ/γ' interface to Ni-based superalloys: First-principles study
Chuanxi Zhu(朱传喜), Tao Yu(于涛). Chin. Phys. B, 2020, 29(9): 096101.
[5] Structural, mechanical, and electronic properties of Zr-Te compounds from first-principles calculations
Peng Wang(王鹏), Ning-Chao Zhang(张宁超), Cheng-Lu Jiang(蒋城露), Fu-Sheng Liu(刘福生), Zheng-Tang Liu(刘正堂), Qi-Jun Liu(刘其军). Chin. Phys. B, 2020, 29(7): 076201.
[6] Dependence of mechanical properties on the site occupancy of ternary alloying elements in γ'-Ni3Al: Ab initio description for shear and tensile deformation
Minru Wen(文敏儒), Xing Xie(谢兴), Huafeng Dong(董华锋), Fugen Wu(吴福根), Chong-Yu Wang(王崇愚). Chin. Phys. B, 2020, 29(7): 078103.
[7] Degenerate antiferromagnetic states in spinel oxide LiV2O4
Ben-Chao Gong(龚本超), Huan-Cheng Yang(杨焕成), Kui Jin(金魁), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2020, 29(7): 077508.
[8] Tunable electronic structures of germanane/antimonene van der Waals heterostructures using an external electric field and normal strain
Xing-Yi Tan(谭兴毅), Li-Li Liu(刘利利), Da-Hua Ren(任达华). Chin. Phys. B, 2020, 29(7): 076102.
[9] First-principles calculations of solute-vacancy interactions in aluminum
Sha-Sha Zhang(张莎莎), Zheng-Jun Yao(姚正军), Xiang-Shan Kong(孔祥山), Liang Chen(陈良), Jing-Yu Qin(秦敬玉). Chin. Phys. B, 2020, 29(6): 066103.
[10] Re effects in model Ni-based superalloys investigated with first-principles calculations and atom probe tomography
Dianwu Wang(王殿武), Chongyu Wang(王崇愚), Tao Yu(于涛), Wenqing Liu(刘文庆). Chin. Phys. B, 2020, 29(4): 043103.
[11] Designing solar-cell absorber materials through computational high-throughput screening
Xiaowei Jiang(江小蔚), Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(2): 028803.
[12] Electronic and optical properties of GaN-MoS2 heterostructure from first-principles calculations
Dahua Ren(任达华), Xingyi Tan(谭兴毅), Teng Zhang(张腾), Yuan Zhang(张源). Chin. Phys. B, 2019, 28(8): 086104.
[13] Band engineering of B2H2 nanoribbons
Bao Lei(雷宝), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2019, 28(4): 046803.
[14] Hydrogenated antimonene as quantum spin Hall insulator: A first-principles study
Xin He(贺欣), Ji-Biao Li(李佶彪). Chin. Phys. B, 2019, 28(3): 037301.
[15] Electronic properties of size-dependent MoTe2/WTe2 heterostructure
Jing Liu(刘婧), Ya-Qiang Ma(马亚强), Ya-Wei Dai(戴雅薇), Yang Chen(陈炀), Yi Li(李依), Ya-Nan Tang(唐亚楠), Xian-Qi Dai(戴宪起). Chin. Phys. B, 2019, 28(10): 107101.
No Suggested Reading articles found!