Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 057304    DOI: 10.1088/1674-1056/ab81ff
Special Issue: SPECIAL TOPIC — Topological 2D materials
TOPICAL REVIEW—Topological 2D materials Prev   Next  

Topology and ferroelectricity in group-V monolayers

Mutee Ur Rehman1, Chenqiang Hua(华陈强)1,2, Yunhao Lu(陆赟豪)1,2
1 State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China;
2 Zhejiang Province Key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  The group-V monolayers (MLs) have been studied intensively after the experimental fabrication of two-dimensional (2D) graphene and black phosphorus. The observation of novel quantum phenomena, such as quantum spin Hall effect and ferroelectricity in group-V elemental layers, has attracted tremendous attention because of the novel physics and promising applications for nanoelectronics in the 2D limit. In this review, we comprehensively review recent research progress in engineering of topology and ferroelectricity, and several effective methods to control the quantum phase transition are discussed. We then introduce the coupling between topological orders and ferroelectric orders. The research directions and outlooks are discussed at the end of the perspective. It is expected that the comprehensive overview of topology and ferroelectricity in 2D group-V materials can provide guidelines for researchers in the area and inspire further explorations of interplay between multiple quantum phenomena in low-dimensional systems.
Keywords:  topology      ferroelectricity      two-dimensional material      group-V element  
Received:  31 December 2019      Revised:  19 February 2020      Published:  05 May 2020
PACS:  73.43.-f (Quantum Hall effects)  
  77.80.-e (Ferroelectricity and antiferroelectricity)  
  03.65.-w (Quantum mechanics)  
  31.15.em (Corrections for core-spin polarization, surface effects, etc.)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974307 and 61574123), Zhejiang Provincial Natural Science Foundation, China (Grant No. D19A040001), the Fundamental Research Funds for the Central Universities of China, and the 2DMOST, Shenzhen University (Grant No. 2018028).
Corresponding Authors:  Yunhao Lu     E-mail:  luyh@zju.edu.cn

Cite this article: 

Mutee Ur Rehman, Chenqiang Hua(华陈强), Yunhao Lu(陆赟豪) Topology and ferroelectricity in group-V monolayers 2020 Chin. Phys. B 29 057304

[1] Liu C C, Feng W and Yao Y 2011 Phys. Rev. Lett. 107 076802
[2] Sheng D N, Weng Z Y, Sheng L and Haldane F D M 2006 Phys. Rev. Lett. 97 036808
[3] Murakami S 2006 Phys. Rev. Lett. 97 236805
[4] Reis F, Li G, Dudy L, Bauernfeind M, Glass S, Hanke W and Thomale R 2017 Science 357 287
[5] Wu M, Dong S, Yao K, Liu J and Zeng X C 2016 Nano Lett. 16 7309
[6] Baskaran G 2018 Many-body Approaches at Different Scales: A Tribute to Norman H. March on the Occasion of his 90th Birthday (Angilella G G N and Amovilli C, Ed.) (Cham: Springer International Publishing) p. 43
[7] Liao M, Zang Y, Guan Z, Li H, Gong Y, Zhu K, Hu X P, Zhang D, Xu Y, Wang Y Y, He K, Ma X C, Zhang S C and Xue Q K 2018 Nat. Phys. 14 344
[8] Xing Y, Fu H L, Liu H, Sun Y, Wang F, Lin X, Wang J, Zhang H M, Peng J P, Ma X C and Xue Q K 2015 Science 350 542
[9] Gibertini M, Koperski M, Morpurgo A F and Novoselov K S 2019 Nat. Nanotechnol. 14 408
[10] Gong C, Li L, Li Z, Ji H, Stern A, Xia Y, Cao T, Bao W, Wang C, Wang Y, Qiu Z Q, Cava R J, Louie S G, Xia J and Zhang X 2017 Nature 546 265
[11] Huang B, Clark G, Navarro-Moratalla E, Klein D R, Cheng R, Seyler K L, Zhong D, Schmidgall E, McGuire M A, Cobden D H, Yao W, Xiao D, Jarillo-Herrero P and Xu X 2017 Nature 546 270
[12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[13] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[14] Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L and Wu K 2012 Nano Lett. 12 3507
[15] Fleurence A, Friedlein R, Ozaki T, Kawai H, Wang Y and Yamada-Takamura Y 2012 Phys. Rev. Lett. 108 245501
[16] Vogt P, De Padova P, Quaresima C, Avila J, Frantzeskakis E, Asensio M C, Resta A, Ealet B and Le Lay G 2012 Phys. Rev. Lett. 108 155501
[17] Li L, Lu S Z, Pan J, Qin Z, Wang Y Q, Wang Y, Cao G Y, Du S and Gao H J 2014 Adv. Mater. 26 4820
[18] Zhang L, Bampoulis P, Rudenko A N, Yao Q, Van Houselt A, Poelsema B, Katsnelson M I and Zandvliet H J W 2016 Phys. Rev. Lett. 116 256804
[19] Zhu F, Chen W, Xu Y, Gao C, Guan D, Liu C, Qian D, Zhang S C and Jia J 2015 Nat. Mater. 14 1020
[20] Li W, Kong L, Chen C, Gou J, Sheng S, Zhang W, Li H, Chen L, Cheng P and Wu K 2018 Sci. Bull. 63 282
[21] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[22] Vishnoi P, Mazumder M, Pati S K and R Rao C N 2018 New J. Chem. 42 14091
[23] Shao Y, Liu Z L, Cheng C, Wu X, Liu H, Liu C, Wang J O, Zhu S Y, Wang Y Q, Shi D X, Ibrahim K, Sun J T, Wang Y L and Gao H J 2018 Nano Lett. 18 2133
[24] Huang X, Guan J, Lin Z, Liu B, Xing S, Wang W and Guo J 2017 Nano Lett. 17 4619
[25] Qin J, Qiu G, Jian J, Zhou H, Yang L, Charnas A, Zemlyanov D Y, Xu C Y, Xu X, Wu W, Wang H and Ye P D 2017 ACS Nano 11 10222
[26] Kane C L and Mele E J 2005 Phys. Rev. Lett. 95 226801
[27] Chen Y L, Analytis J G, Chu J H, Liu Z K, Mo S K, Qi X L, Zhang H J, Lu D H, Dai X, Fang Z, Zhang S C, Fisher I R, Hussain Z and Shen Z X 2009 Science 325 178
[28] Hsieh D, Xia Y, Qian D, Wray L, Meier F, Dil J H, Osterwalder J, Patthey L, Fedorov A V, Lin H, Bansil A, Grauer D, Hor Y S, Cava R J and Hasan M Z 2009 Phys. Rev. Lett. 103 146401
[29] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[30] Zhang S, Zhu W and Sun Q 2013 J. Phys. Condens. Matter 25 295301
[31] Yao Y, Ye F, Qi X L, Zhang S C and Fang Z 2007 Phys. Rev. B 75 041401
[32] Xu Y, Yan B, Zhang H J, Wang J, Xu G, Tang P, Duan W and Zhang S C 2013 Phys. Rev. Lett. 111 136804
[33] Cahangirov S, Topsakal M, Aktürk E, Šahin H and Ciraci S 2009 Phys. Rev. Lett. 102 236804
[34] Vishnoi P, Pramoda K and Rao C N R 2019 ChemNanoMat 5 1062
[35] Auciello O, Scott J F and Ramesh R 1998 Phys. Today 51 22
[36] Nuraje N and Su K 2013 Nanoscale 5 8752
[37] Dawber M, Rabe K M and Scott J F 2005 Rev. Mod. Phys. 77 1083
[38] Scott J F 2007 Science 315 954
[39] Garrity K F, Rabe K M and Vanderbilt D 2014 Phys. Rev. Lett. 112 127601
[40] Wu M and Jena P 2018 Wiley Interdiscip. Rev. Comput. Mol. Sci. 8 e1365
[41] Guan Z, Hu H, Shen X, Xiang P, Zhong N, Chu J and Duan C 2020 Adv. Electron. Mater. 6 1900818
[42] Di Sante D, Stroppa A, Barone P, Whangbo M H and Picozzi S 2015 Phys. Rev. B 91 161401
[43] Xiao C, Wang F, Yang S A, Lu Y, Feng Y and Zhang S 2018 Adv. Funct. Mater. 28 1707383
[44] Wu M and Zeng X C 2016 Nano Lett. 16 3236
[45] Fei R, Kang W and Yang L 2016 Phys. Rev. Lett. 117 097601
[46] Lu C, Wu M, Lin L and Liu J M 2019 Natl. Sci. Rev. 6 653
[47] Liu J, Fang C and Fu L 2019 Chin. Phys. B 28 047301
[48] Zhang L, Huang H, Zhang B, Gu M, Zhao D, Zhao X, Li L, Zhou J, Wu K, Cheng Y and Zhang J 2019 Angew. Chem. Int. Ed. 58 1074
[49] Brown A and Rundqvist S 1965 Acta Crystallogr. 19 684
[50] Bridgman P W 1914 J. Am. Chem. Soc. 36 1344
[51] Hultgren R, Gingrich N S and Warren B E 1935 J. Chem. Phys. 3 351
[52] Ruck M, Hoppe D, Wahl B, Simon P, Wang Y and Seifert G 2005 Angew. Chem. Int. Ed. 44 7616
[53] Jacobs R B 1937 J. Chem. Phys. 5 945
[54] Jamieson J C 1963 Science 139 1291
[55] Saito M, Takemori Y, Hashi T, Nagao T and Yaginuma S 2007 Jpn. J. Appl. Phys. 46 7824
[56] Namari N A P and Saito M 2019 Jpn. J. Appl. Phys. 58 061003
[57] Burford N, Carpenter Y Y, Conrad E and Saunders C D L 2010 Biol. Chem. Arsenic Antimony Bismuth 1
[58] Zhu Z and Tománek D 2014 Phys. Rev. Lett. 112 176802
[59] Zhang S, Xie M, Li F, Yan Z, Li Y, Kan E, Liu W, Chen Z and Zeng H 2016 Angew. Chem. Int. Ed. 55 1666
[60] Wu M, Fu H, Zhou L, Yao K and Zeng X C 2015 Nano Lett. 15 3557
[61] Zhuo Z, Wu X and Yang J 2016 J. Am. Chem. Soc. 138 7091
[62] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tománek D and Ye P D 2014 ACS Nano 8 4033
[63] Zhang J L, Zhao S, Han C, Wang Z, Zhong S, Sun S, Guo R, Zhou X, Gu C D, Di K, Li Z and Chen W 2016 Nano Lett. 16 4903
[64] Gibaja C, Rodriguez-San-Miguel D, Ares P, Gómez-Herrero J, Varela M, Gillen R, Maultzsch J, Hauke F, Hirsch A, Abellán G and Zamora F 2016 Angew. Chem. Int. Ed. 55 14345
[65] Yang Z, Wu Z, Lyu Y and Hao J 2019 InfoMat 1 98
[66] Shi Z Q, Li H, Yuan Q Q, Song Y H, Lv Y Y, Shi W, Jia Z Y, Gao L, Chen Y B, Zhu W and Li S C 2019 Adv. Mater. 31 1806130
[67] Yuhara J, Fujii Y, Nishino K, Isobe N, Nakatake M, Xian L, Rubio A and Le Lay G 2018 2D Mater. 5 025002
[68] Nagao T, Sadowski J, Saito M, Yaginuma S, Fujikawa Y, Kogure T, Ohno T, Hasegawa Y, Hasegawa S and Sakurai T 2004 Phys. Rev. Lett. 93 105501
[69] Xu J P, Zhang J Q, Tian H, Xu H, Ho W and Xie M 2017 Phys. Rev. Mater. 1 061002
[70] Zhuang J, Liu C, Gao Q, Liu Y, Feng H, Xu X, Wang J, Zhao J, Dou S X, Hu Z and Du Y 2018 ACS Nano 12 5059
[71] Lu W, Nan H, Hong J, Chen Y, Zhu C, Liang Z, Ma X, Ni Z, Jin C and Zhang Z 2014 Nano Res. 7 853
[72] Zhu S Y, Shao Y, Wang E, Cao L, Li X Y, Liu Z L, Liu C, Liu L W, Wang J O, Ibrahim K, Sun J T, Wang Y L, Du S and Gao H J 2019 Nano Lett. 19 6323
[73] Lu Y, Xu W, Zeng M, Yao G, Shen L, Yang M, Luo Z, Pan F, Wu K, Das T, He P, Jiang J, Martin J, Feng Y P, Lin H and Wang X 2015 Nano Lett. 15 80
[74] Zhang S, Guo S, Chen Z, Wang Y, Gao H, Gómez-Herrero J, Ares P, Zamora F, Zhu Z and Zeng H 2018 Chem. Soc. Rev. 47 982
[75] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[76] Dai X, Le C C, Wu X X, Qin S S, Lin Z P and Hu J P 2016 Chin. Phys. Lett. 33 127301
[77] Fu L and Kane C L 2007 Phys. Rev. B 76 045302
[78] Lu Y, Zhou D, Chang G, Guan S, Chen W, Jiang Y, Jiang J, Wang X, Yang S A, Feng Y P, Kawazoe Y and Lin H 2016 npj Comput. Mater. 2 16011
[79] Kamal C and Ezawa M 2015 Phys. Rev. B 91 085423
[80] Liu Q, Zhang X, Abdalla L B, Fazzio A and Zunger A 2015 Nano Lett. 15 1222
[81] Kim J, Baik S S, Ryu S H, Sohn Y, Park S, Park B G, Denlinger J, Yi Y, Choi H J and Kim K S 2015 Science 349 723
[82] Märkl T, Kowalczyk P J, Le Ster M, Mahajan I V, Pirie H, Ahmed Z, Bian G, Wang X, Chiang T C and Brown S A 2017 2D Mater. 5 011002
[83] Hirahara T, Nagao T, Matsuda I, Bihlmayer G, Chulkov E V, Koroteev Y M, Echenique P M, Saito M and Hasegawa S 2006 Phys. Rev. Lett. 97 146803
[84] Drozdov I K, Alexandradinata A, Jeon S, Nadj-Perge S, Ji H, Cava R J, Andrei Bernevig B and Yazdani A 2014 Nat. Phys. 10 664
[85] Zhang H, Ma Y and Chen Z 2015 Nanoscale 7 19152
[86] Zhao M, Zhang X and Li L 2015 Sci. Rep. 5 16108
[87] Zhang P, Liu Z, Duan W, Liu F and Wu J 2012 Phys. Rev. B 85 201410
[88] Yang G, Xu Z, Liu Z, Jin S, Zhang H and Ding Z 2017 J. Phys. Chem. C 121 12945
[89] Drozdov I K, Alexandradinata A, Jeon S, Nadj-Perge S, Ji H, Cava R J, Bernevig B A and Yazdani A 2014 arXiv:14042598v1[cond-mat.mes-hall]
[90] Guo S, Zhang Y, Ge Y, Zhang S, Zeng H and Zhang H 2019 Adv. Mater. 31 1902352
[91] Nie Y, Rahman M, Wang D, Wang C and Guo G 2016 Sci. Rep. 5 17980
[92] Zhu L, Wang S S, Guan S, Liu Y, Zhang T, Chen G and Yang S A 2016 Nano Lett. 16 6548
[93] Hua C, Li S, Xu Z, Zheng Y, Yang S A and Lu Y 2020 Adv. Sci. 7 1901939
[94] Zhao J, Li Y and Ma J 2016 Nanoscale 8 9657
[95] Wang Y, Ji W, Zhang C, Li P, Li F, Ren M, Chen X L, Yuan M and Wang P 2016 Sci. Rep. 6 20342
[96] Song Z, Liu C C, Yang J, Han J, Ye M, Fu B, Yang Y, Niu Q, Lu J and Yao Y 2014 NPG Asia Mater. 6 e147
[97] Zhou T, Zhang J, Xue Y, Zhao B, Zhang H, Jiang H and Yang Z 2016 Phys. Rev. B 94 235449
[98] Jin K H, Huang H, Wang Z and Liu F 2019 Nanoscale 11 7256
[99] Wang Y, Xiao C, Chen M, Hua C, Zou J, Wu C, Jiang J, Yang S A, Lu Y and Ji W 2018 Mater. Horizons 5 521
[100] Chang K, Liu J, Lin H, Wang N, Zhao K, Zhang A, Jin F, Zhong Y, Hu X, Duan W, Zhang Q, Fu L, Xue Q K, Chen X and Ji S H 2016 Science 353 274
[101] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J and Liu Z 2016 Nat. Commun. 7 12357
[102] Xiao J, Zhu H, Wang Y, Feng W, Hu Y, Dasgupta A, Han Y, Wang Y, Muller D A, Martin L W, Hu P and Zhang X 2018 Phys. Rev. Lett. 120 227601
[103] Sharma P, Xiang F X, Shao D F, Zhang D, Tsymbal E Y, Hamilton A R and Seidel J 2019 Sci. Adv. 5 eaax5080
[104] Fei Z, Zhao W, Palomaki T A, Sun B, Miller M K, Zhao Z, Yan J, Xu X and Cobden D H 2018 Nature 560 336
[105] Tu Z, Wu M and Zeng X C 2017 J. Phys. Chem. Lett. 8 1973
[106] Kooi B J and Noheda B 2016 Science 353 221
[107] Chen P, Zhang X J and Liu B G 2019 ACS Appl. Nano Mater. 2 58
[108] Liu C, Wan W, Ma J, Guo W and Yao Y 2018 Nanoscale 10 7984
[109] Shen S, Liu C, Ma Y, Huang B and Dai Y 2019 Nanoscale 11 11864
[110] Yang Q, Xiong W, Zhu L, Gao G and Wu M 2017 J. Am. Chem. Soc. 139 11506
[111] Xiao D, Liu G B, Feng W, Xu X and Yao W 2012 Phys. Rev. Lett. 108 196802
[112] Di Sante D, Barone P, Bertacco R and Picozzi S 2013 Adv. Mater. 25 509
[113] Kou L, Ma Y, Liao T, Du A and Chen C 2018 Phys. Rev. Appl. 10 024043
[114] Wu M, Burton J D, Tsymbal E Y, Zeng X C and Jena P 2012 J. Am. Chem. Soc. 134 14423
[115] Monserrat B, Bennett J W, Rabe K M and Vanderbilt D 2017 Phys. Rev. Lett. 119 036802
[116] Di Sante D, Barone P, Stroppa A, Garrity K F, Vanderbilt D and Picozzi S 2016 Phys. Rev. Lett. 117 076401
[117] He J, Di Sante D, Li R, Chen X Q, Rondinelli J M and Franchini C 2018 Nat. Commun. 9 492
[118] Lau A and Ortix C 2019 Phys. Rev. Lett. 122 186801
[119] Sun L and Wan S L 2015 Chin. Phys. Lett. 32 057501
[120] Qi X, Li R, Zang J and Zhang S 2009 Science 323 1143f
[121] Hu X, Pang Z, Zhang C, Wang P, Li P and Ji W 2019 J. Mater. Chem. C 7 9406
[122] Kou L, Fu H, Ma Y, Yan B, Liao T, Du A and Chen C 2018 Phys. Rev. B 97 075429
[123] Kang K, Li T, Sohn E, Shan J and Mak K F 2019 Nat. Mater. 18 324
[124] Du Z Z, Wang C M, Li S, Lu H Z and Xie X C 2019 Nat. Commun. 10 3047
[125] Sun H H, Wang M X, Zhu F, Wang G Y, Ma H Y, Xu Z A, Liao Q, Lu Y, Gao C L, Li Y Y, Liu C, Qian D, Guan D and Jia J F 2017 Nano Lett. 17 3035
[1] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[2] Progress on 2D topological insulators and potential applications in electronic devices
Yanhui Hou(侯延辉), Teng Zhang(张腾), Jiatao Sun(孙家涛), Liwei Liu(刘立巍), Yugui Yao(姚裕贵), Yeliang Wang(王业亮). Chin. Phys. B, 2020, 29(9): 097304.
[3] Improvement of valley splitting and valley injection efficiency for graphene/ferromagnet heterostructure
Longxiang Xu(徐龙翔), Wengang Lu(吕文刚), Chen Hu(胡晨), Qixun Guo(郭奇勋), Shuai Shang(尚帅), Xiulan Xu(徐秀兰), Guanghua Yu(于广华), Yu Yan(岩雨), Lihua Wang(王立华), Jiao Teng(滕蛟). Chin. Phys. B, 2020, 29(7): 077304.
[4] Modulation of carrier lifetime in MoS2 monolayer by uniaxial strain
Hao Hong(洪浩), Yang Cheng(程阳), Chunchun Wu(吴春春), Chen Huang(黄琛), Can Liu(刘灿), Wentao Yu(于文韬), Xu Zhou(周旭), Chaojie Ma(马超杰), Jinhuan Wang(王金焕), Zhihong Zhang(张智宏), Yun Zhao(赵芸), Jie Xiong(熊杰), Kaihui Liu(刘开辉). Chin. Phys. B, 2020, 29(7): 077201.
[5] Theoretical studies on alloying of germanene supported on Al (111) substrate
Qian-Xing Chen(陈前行), Hao Yang(杨浩), Gang Chen(陈刚). Chin. Phys. B, 2020, 29(10): 108103.
[6] Effects of layer stacking and strain on electronic transport in two-dimensional tin monoxide
Yanfeng Ge(盖彦峰), Yong Liu(刘永). Chin. Phys. B, 2019, 28(7): 077104.
[7] Efficient doping modulation of monolayer WS2 for optoelectronic applications
Xinli Ma(马新莉), Rongjie Zhang(张荣杰), Chunhua An(安春华), Sen Wu(吴森), Xiaodong Hu(胡晓东), Jing Liu(刘晶). Chin. Phys. B, 2019, 28(3): 037803.
[8] Visible-to-near-infrared photodetector based on graphene-MoTe2-graphene heterostructure
Rui-Xue Hu(户瑞雪), Xin-Li Ma(马新莉), Chun-Ha An(安春华), Jing Liu(刘晶). Chin. Phys. B, 2019, 28(11): 117802.
[9] Chemical vapor deposition growth of crystal monolayer SnS2 with NaCl-assistant
Xiao-Xu Liu(刘晓旭), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yong-Sheng Wang(王永生), Ming Fu(富鸣). Chin. Phys. B, 2019, 28(11): 118101.
[10] Recent progress on the prediction of two-dimensional materials using CALYPSO
Cheng Tang(唐程), Gurpreet Kour, Aijun Du(杜爱军). Chin. Phys. B, 2019, 28(10): 107306.
[11] Emerging properties of two-dimensional twisted bilayer materials
Yang Cheng(程阳), Chen Huang(黄琛), Hao Hong(洪浩), Zixun Zhao(赵子荀), Kaihui Liu(刘开辉). Chin. Phys. B, 2019, 28(10): 107304.
[12] Two-dimensional XSe2 (X=Mn, V) based magnetic tunneling junctions with high Curie temperature
Longfei Pan(潘龙飞), Hongyu Wen(文宏玉), Le Huang(黄乐), Long Chen(陈龙), Hui-Xiong Deng(邓惠雄), Jian-Bai Xia(夏建白), Zhongming Wei(魏钟鸣). Chin. Phys. B, 2019, 28(10): 107504.
[13] Photodetectors based on two-dimensional materials and organic thin-film heterojunctions
Jiayue Han(韩嘉悦), Jun Wang(王军). Chin. Phys. B, 2019, 28(1): 017103.
[14] Room-temperature infrared photodetectors with hybrid structure based on two-dimensional materials
Tiande Liu(刘天德), Lei Tong(童磊), Xinyu Huang(黄鑫宇), Lei Ye(叶镭). Chin. Phys. B, 2019, 28(1): 017302.
[15] Two-dimensional materials-decorated microfiber devices for pulse generation and shaping in fiber lasers
Zhi-Chao Luo(罗智超), Meng Liu(刘萌), Ai-Ping Luo(罗爱平), Wen-Cheng Xu(徐文成). Chin. Phys. B, 2018, 27(9): 094215.
No Suggested Reading articles found!