Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067701    DOI: 10.1088/1674-1056/ab81fb

Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers

Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫)
Xi'an Research Institute of High Technology, Xi'an 710025, China
Abstract  The SrFe12O19@carbonyl iron (CI) core-shell composites used in microwave absorption are prepared by the metal-organic chemical vapor deposition (MOCVD). The x-ray diffractometer, scanning electron microscope, energy dispersive spectrometer, and vector network analyzer are used to characterize the structural, electromagnetic, and absorption properties of the composites. The results show that the SrFe12O19@CI composites with a core-shell structure could be successfully prepared under the condition: deposition temperatures above 180 ℃, deposition time 30 min, and gas flow rate 30 mL/min. The electromagnetic properties of the composites change significantly, and their absorption capacities are improved. Of the obtained samples, those samples prepared at a deposition temperature of 180 ℃ exhibit the best absorption performance. The reflection loss of SrFe12O19@CI (180 ℃) with 1.5 mm-2.5 mm in thickness is less than -10 dB in a frequency range of 8 GHz-18 GHz, which covers the whole X band and Ku band.
Keywords:  SrFe12O19      carbonyl iron      electromagnetic properties      microwave absorption     
Received:  16 December 2019      Published:  05 June 2020
PACS:  77.84.Lf (Composite materials)  
  78.20.Ci (Optical constants (including refractive index, complex dielectric constant, absorption, reflection and transmission coefficients, emissivity)) (Fracture)  
  81.05.Lg (Polymers and plastics; rubber; synthetic and natural fibers; organometallic and organic materials)  
Corresponding Authors:  Yuan Liu     E-mail:

Cite this article: 

Yuan Liu(刘渊), Rong Li(李茸), Ying Jia(贾瑛), Zhen-Xin He(何祯鑫) Effect of deposition temperature on SrFe12O19@carbonyl iron core-shell composites as high-performance microwave absorbers 2020 Chin. Phys. B 29 067701

[1] Liu Y, Liu X X, H E C P and Wang W 2018 Surf. Technol. 47 72 (in Chinese)
[2] Yu J Y, Chi F L, Sun Y P, Guo J J and Liu X G 2018 Ceram. Int. 44 19207
[3] Liu X G, Cui C Y, Yu J Y, Sun Y P and Xia A L 2018 Mater. Lett. 225 1
[4] Liu X G, Yu J Y, Cui C Y, Sun Y P, Li X L and Li Z X 2018 J. Phys. D: Appl. Phys. 51 265002
[5] Liu X G, Ran S L, Yu J Y and Sun Y P 2018 J. Alloys Compd. 765 943
[6] Bobzin K, Bolelli G, Bruehl M, Hujanen A, Lintunen P, Lisjak D, Gyergyek S and Lusvarghi L 2011 J. Eur. Ceram. Soc. 31 1439
[7] Sachin T, Himanshu B B, Ramesh C A, Vijaya A and Trilok C S 2011 Trans. Indian Inst. Met. 64 607
[8] Chen W, Liu Q Y, Zhu X X and Fu M 2017 RSC Adv. 7 40650
[9] Liu Y, Liu X X and Wang X J 2014 J. Alloys Compd. 584 249
[10] Liu Y, Liu X X, Li R and Li Y 2015 RSC Adv. 5 18660
[11] Zhou Y Y, Xie H, Zhou W C and Ren Z W 2018 J. Magn. Magn. Mater. 446 143
[12] Zuo Y X, Yao Z J, Lin H Y, Zhou J T, Guo X L and Cai H S 2019 J. Mater. Sci. 54 11827
[13] Cheng Y L, Dai J M, Wu D J and Sun Y P 2010 J. Magn. Magn. Mater. 322 97
[14] Pan X, Qiu J and Gu M 2007 J. Mater. Sci. 42 2086
[15] Pan X, Shen H, Qiu J and Gu M Y 2007 Mater. Chem. Phys. 101 505
[16] Wang R, Wan Y Z, He F, Qi Y, You W and Luo H L 2012 Appl. Surf. Sci. 258 3007
[17] Manasevit H M 1968 Appl. Phys. Lett. 12 156
[18] Lacrevaz T, Fléchet B, Farcy A, Torres J, Gros-Jean M, Bermond C, VoaO.Cueto T T, Blampey B, Angénieux G, Piquet J and Crécy de F 2006 Microelectron. Eng. 83 2184
[19] Jian Z and Bo C 2017 J. Mater. Sci. - Mater. Electron. 28 1
[20] Iqbal N, Wang X, Babar A A, Zainab G, Yu J and Ding B 2017 Sci. Rep. 7 15153
[21] Li G M, Wang C L, Li W X, Ding R M and Xu Y 2014 Phys. Chem. Chem. Phys. 16 12385
[22] Qing Y, Zhou W, Luo F and Zhu D M 2010 Carbon 48 4074
[23] Zeng M, Zhang X X, Yu R H, Zhao D L, Zhang Y H and Wang X L 2014 Mater. Sci. Eng. B 185 21
[24] Naito Y and Suetake K 1971 IEEE Trans. Microwave Theory Tech. 19 65
[25] Meshram M R, Agrawal N K, Bharoti Sinha and Misra P S 2004 J. Magn. Magn. Mater. 271 207
[1] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
[2] Multiferroic and enhanced microwave absorption induced by complex oxide interfaces
Cuimei Cao(曹翠梅), Chunhui Dong(董春晖), Jinli Yao(幺金丽), Changjun Jiang(蒋长军). Chin. Phys. B, 2018, 27(1): 017503.
[3] Microwave absorption properties of Ag naowires/carbon black composites
Hai-Long Huang(黄海龙), Hui Xia(夏辉), Zhi-Bo Guo(郭智博), Yu Chen(陈羽), Hong-Jian Li(李宏建). Chin. Phys. B, 2017, 26(2): 025207.
[4] Theoretical calculation and experiment of microwave electromagnetic property of Ni(C) nanocapsules
Dan-Feng Zhang(张丹枫), Zhi-Feng Hao(郝志峰), Bi Zeng(曾碧), Yan-Nan Qian(钱艳楠), Ying-Xin Huang(黄颖欣), Zhen-Da Yang(杨振大). Chin. Phys. B, 2016, 25(4): 040201.
[5] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with gold nanoparticles
Fu Chen, He Da-Wei, WangYong-Sheng, Fu Ming, Geng Xin, Zhuo Zu-Liang. Chin. Phys. B, 2015, 24(8): 087801.
[6] Synthesis and microwave absorption properties of graphene-oxide(GO)/polyaniline nanocomposite with Fe3O4 particles
Geng Xin, He Da-Wei, Wang Yong-Sheng, Zhao Wen, Zhou Yi-Kang, Li Shu-Lei. Chin. Phys. B, 2015, 24(2): 027803.
[7] Templated synthesis of highly ordered mesoporous cobalt ferrite and its microwave absorption properties
Li Guo-Min, Wang Lian-Cheng, Xu Yao. Chin. Phys. B, 2014, 23(8): 088105.
[8] High microwave absorption performances for single-walled carbon nanotube-epoxy composites with ultra-low loadings
Liang Jia-Jie, Huang Yi, Zhang Fan, Li Ning, Ma Yan-Feng, Li Fei-Fei, Chen Yong-Sheng. Chin. Phys. B, 2014, 23(8): 088802.
[9] The effects of static magnetic field on microwave absorption of hydrogen plasma in carbon nanotubes: A numerical study
Peng Zhi-Hua, Gong Xue-Yu, Peng Yan-Feng, Guo Yan-Chun, Ning Yan-Tao. Chin. Phys. B, 2012, 21(7): 078102.
[10] Microwave reflection properties of planar anisotropy Fe50Ni50 powder/paraffin composites
Wei Jian-Qiang,Zhang Zhao-Qi,Han Rui,Wang Tao,Li Fa-Shen. Chin. Phys. B, 2012, 21(3): 037601.
[11] Effect of Mn-doping on the growth mechanism and electromagnetic properties of chrysanthemum-like ZnO nanowire clusters
Yan Jun-Feng, You Tian-Gui, Zhang Zhi-Yong, Tian Jiang-Xiao, Yun Jiang-Ni, Zhao Wu. Chin. Phys. B, 2011, 20(4): 048102.
[12] Microstructural and electromagnetic properties of MnO2 coated nickel particles with submicron size
Tang Bao-Lin, He Jun, Ji Tian-Hao, Wang Xin-Lin. Chin. Phys. B, 2009, 18(6): 2571-2575.
[13] Effect of polyacrylamide on morphology and electromagnetic properties of chrysanthemum-like ZnO particles
Yan Jun-Feng, Zhang Zhi-Yong, You Tian-Gui, Zhao Wu, Yun Jiang-Ni, Hang Fu-Chun, Zhang Xiao-Dan. Chin. Phys. B, 2009, 18(10): 4552-4557.
[14] Influence of shape anisotropy on microwave complex permeability in carbonyl iron flakes/epoxy resin composites
Wen Fu-Sheng, Qiao Liang, Zhou Dong, Zuo Wen-Liang, Yi Hai-Bo, Li Fa-Shen. Chin. Phys. B, 2008, 17(6): 2263-2267.
[15] Low field microwave absorption and magnetization process in CoFeNi electroplated wires
H. García-Miquel, G. V. Kurlyandskaya. Chin. Phys. B, 2008, 17(4): 1430-1435.
No Suggested Reading articles found!