Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 057401    DOI: 10.1088/1674-1056/ab81f3
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Application of graphene vertical field effect to regulation of organic light-emitting transistors

Hang Song(宋航), Hao Wu(吴昊), Hai-Yang Lu(陆海阳), Zhi-Hao Yang(杨志浩), Long Ba(巴龙)
State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
Abstract  The luminescence intensity regulation of organic light-emitting transistor (OLED) device can be achieved effectively by the combination of graphene vertical field effect transistor (GVFET) and OLED. In this paper, we fabricate and characterize the graphene vertical field-effect transistor with gate dielectric of ion-gel film, confirming that its current switching ratio reaches up to 102. Because of the property of high light transmittance in ion-gel film, the OLED device prepared with graphene/PEDOT:PSS as composite anode exhibits good optical properties. We also prepare the graphene vertical organic light-emitting field effect transistor (GVOLEFET) by the combination of GVFET and graphene OLED, analyzing its electrical and optical properties, and confirming that the luminescence intensity can be significantly changed by regulating the gate voltage.
Keywords:  graphene vertical field effect transistor      organic light-emitting transistor      ion-gel film      gate voltage regulation  
Received:  15 November 2019      Revised:  09 March 2020      Published:  05 May 2020
PACS:  74.25.Gz (Optical properties)  
  81.05.ue (Graphene)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 31872901) and the National Key Research and Development Program of China (Grant No. 2016YFA0501602).
Corresponding Authors:  Long Ba     E-mail:  balong@seu.edu.cn

Cite this article: 

Hang Song(宋航), Hao Wu(吴昊), Hai-Yang Lu(陆海阳), Zhi-Hao Yang(杨志浩), Long Ba(巴龙) Application of graphene vertical field effect to regulation of organic light-emitting transistors 2020 Chin. Phys. B 29 057401

[1] Tang C W, Vanslyke S A and Chen C H 1989 J. Appl. Phys. 65 3610
[2] Chiang C J, Winscom C, Bull S and Monkman A 2009 Org. Electron. 10 1268
[3] Choi M C, Kim Y and Ha C S 2008 Prog. Polym. Sci. 33 581
[4] Zhang Y, Tang T, Girit C, Hao Z, Martin M C, Zettl A, Crommie M F, Shen Y R and Wang F 2009 Nature 459 820
[5] Park J S and Choi H J 2015 Phys. Rev. B 92 045042
[6] Geim A K 2009 Science 324 1530
[7] Geim A K and Novoselov K S 2007 Nat. Mater. 6 183
[8] Li N, Oida S, Tulevski G S, Han S J, Hannon J B, Sadana D K and Chen T C 2013 Nat. Commun. 4 2294
[9] Cho H, Shin J W, Cho N, Moon J, Han J H, Kwon Y D, Cho S and Lee J I 2015 IEEE J. Sel. Top. Quantum Electron. 22 48
[10] Han T H, Lee Y, Choi M R, Woo S H, Bae S H, Hong B H, Ahn J H and Lee T W 2012 Nat. Photon. 6 105
[11] Zhu Z C, Murtaza I, Meng H and Huang W 2017 Rsc Adv. 7 17387
[12] Shih C J, Pfattner R, Chiu Y C, Liu N, Lei T, Kong D, Kim Y, Chou H H, Bae W G and Bao Z 2015 Nano Lett. 15 7587
[13] Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L and Morozov S V 2012 Science 335 947
[14] Thanasis G, Rashid J, Belle B D, Liam B, Gorbachev R V, Morozov S V, Yong-Jin K, Ali G, Haigh S J and Oleg M 2013 Nat. Nanotechnol. 8 100
[15] Yu H, Dong Z, Guo J, Kim D and So F 2016 Acs Appl. Mater Interfaces 8 10430
[16] Kim B J, Jang H, Lee S K, Hong B H, Ahn J H and Cho J H 2010 Nano Lett. 10 3464
[17] Cho J H, Lee J, Xia Y, Kim B S, He Y, Renn M J, Lodge T P and Frisbie C D 2008 Nat. Mater. 7 900
[18] Lee S, Kim B J, Jang H, Yoon S C and Ahn J 2011 Nano Lett. 11 4642
[19] Bard A J and Faulkner L R 1983 J. Chem. Educ. 60 1
[20] Song H, Liu J, Chen C and Ba L 2019 Acta Phys. Sin. 68 230 (in Chinese)
[21] Beams R and Novotny L 2015 J. Phys.: Condens. Matter 27 83002
[22] Lee K H, Kang M S, Zhang S, Cu Y, Lodge T P and Frisbie C D 2012 Adv. Mater. 24 4457
[23] Tao J, Zhao C Z, Zhao C, Taechakumput P, Werner M, Taylor S and Chalker P R 2012 Materials 5 1005
[24] Li J, Zhao C, Zhang H, Zhang J, P, Yang C, Xia Y and Fan D 2016 Chin. Phys. B 25 028402
[25] Gunawardane K and Kularatna N 2018 Iet Power Electron. 11 229
[26] Lin Y J and Zeng J J 2013 Appl. Phys. Lett. 102 32104
[27] Tsai Y S, Juang F S, Yang T H, Yokoyama M C, Ji L W and Su Y K 2008 J. Phys. & Chem. Solids 69 764
[28] Wu X, Li F, Wei W and Guo T 2014 Vacuum 101 53
[29] Liu L H, Shang W J, Han C, Zhang Q, Yao Y, Ma X, Wang M, Yu H, Duan Y and Sun J 2018 Acs Appl. Mater. Interfaces 8 7289
[30] Colvin V L, Schlamp M C and Alivisatos A P 1994 Nature 370 354
[1] Effect of graphene grain boundaries on MoS2/graphene heterostructures
Yue Zhang(张悦), Xiangzhe Zhang(张祥喆), Chuyun Deng(邓楚芸), Qi Ge(葛奇), Junjie Huang(黄俊杰), Jie Lu(卢捷), Gaoxiang Lin(林高翔), Zekai Weng(翁泽锴), Xueao Zhang(张学骜), Weiwei Cai(蔡伟伟). Chin. Phys. B, 2020, 29(6): 067403.
[2] Generalized Drude model and electromagnetic screening in metals and superconductors
Da Wang(王达). Chin. Phys. B, 2018, 27(5): 057401.
[3] The effect of replacing pnictogen elements on the physical properties of SrMg2X2 (X=N, P, As, Sb, Bi) Zintl compounds
G Murtaza, Abdul Ahad Khan, M Yaseen, A Laref, Naeem Ullah, Inayat ur Rahman. Chin. Phys. B, 2018, 27(4): 047102.
[4] Shape controllable synthesis and enhanced upconversion photoluminescence of β-NaGdF4:Yb3+, Er3+ nanocrystals by introducing Mg2+
Yong-Xin Yang(杨永馨), Zheng Xu(徐征), Su-Ling Zhao(赵谡玲), Zhi-Qin Liang(梁志琴), Wei Zhu(朱薇), Jun-Jie Zhang(张俊杰). Chin. Phys. B, 2017, 26(8): 087801.
[5] Effect of anionic ordering on the electronic and optical properties of BaTaO2N: TB-mBJ density functional calculation
K Bettine, O Sahnoun, M Sahnoun, M Driz. Chin. Phys. B, 2017, 26(5): 057101.
[6] The electronic, optical, and thermodynamical properties of tetragonal, monoclinic, and orthorhombic M3N4 (M=Si, Ge, Sn): A first-principles study
Dong Chen(陈东), Ke Cheng(程科), Bei-Ying Qi(齐蓓影). Chin. Phys. B, 2017, 26(4): 046303.
[7] Time-dependent evolution process of Sb2Te3 from nanoplates to nanorods and their Raman scattering properties
Xiu-Qing Meng(孟秀清), Ning Tang(汤宁), Mian-Zeng Zhong(钟绵增), Hui-Qun Ye(叶慧群), Yun-Zhang Fang(方允樟). Chin. Phys. B, 2016, 25(10): 107105.
[8] Evaluation of electrical and optical characteristics of ZnO/CdS/CIS thin film solar cell
Hadi Zarei, Rasoul Malekfar. Chin. Phys. B, 2016, 25(2): 027103.
[9] What makes the Tc of FeSe/SrTiO3 so high?
Dung-Hai Lee. Chin. Phys. B, 2015, 24(11): 117405.
[10] Chemical modification of silicene
Wang Rong, Xu Ming-Sheng, Pi Xiao-Dong. Chin. Phys. B, 2015, 24(8): 086807.
[11] Electronic and optical properties of lithium niobate under high pressure: A first-principles study
Sang Dan-Dan, Wang Qing-Lin, Han Chong, Chen Kai, Pan Yue-Wu. Chin. Phys. B, 2015, 24(7): 077104.
[12] Linear and nonlinear optical properties of Sb-doped GeSe2 thin films
Zhang Zhen-Ying, Chen Fen, Lu Shun-Bin, Wang Yong-Hui, Shen Xiang, Dai Shi-Xun, Nie Qiu-Hua. Chin. Phys. B, 2015, 24(6): 066801.
[13] Phase transformation and morphology tuning of β-NaYF4: Yb3+, Er3+ nanocrystals through K+ ions codoping
Liang Zhi-Qin, Zhao Su-Ling, Cui Yue, Tian Li-Jiao, Zhang Jun-Jie, Xu Zheng. Chin. Phys. B, 2015, 24(3): 037801.
[14] In-plane optical spectral weight redistribution in the optimally doped Ba0.6K0.4Fe2As2 superconductor
Xu Bing, Dai Yao-Min, Xiao Hong, R. P. S. M. Lobo, Qiu Xiang-Gang. Chin. Phys. B, 2014, 23(8): 087401.
[15] Theoretical optoelectronic analysis of intermediate-band photovoltaic material based on ZnY1-xOx (Y=S, Se, Te) semiconductors by first-principles calculations
Wu Kong-Ping, Gu Shu-Lin, Ye Jian-Dong, Tang Kun, Zhu Shun-Ming, Zhou Meng-Ran, Huang You-Rui, Zhang Rong, Zheng You-Dou. Chin. Phys. B, 2013, 22(10): 107103.
No Suggested Reading articles found!