Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 064206    DOI: 10.1088/1674-1056/ab81f1
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

M2-factor of high-power laser beams through a multi-apertured ABCD optical system

Xiangmei Zeng(曾祥梅)1, Meizhi Zhang(张美志)1, Dongmei Cao(曹冬梅)2, Dingyu Sun(孙鼎宇)1, Hua Zhou(周花)1
1 School of Electronic Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China;
2 School of Physics and Electronic Information, Yanan Univeristiy, Yanan 716000, China
Abstract  Based on the generalized truncated second-order moments, an approximate analytical formula of the beam propagation factor M2 of high-power laser beams passing through the optical system with multiple hard-edged apertures is deduced. Numerical examples of the beams passing through an aperture-spatial filter are enclosed, and the influences of amplitude modulations (AMs) and phase fluctuations (PFs) on the beam propagation quality of high-power laser beams passing through the multi-apertured ABCD optical system are considered and discussed. It is shown that PFs are able to degrade the beam propagation quality of laser beams more than AMs when the high-power laser beams passing through the aperture-spatial filter, furthermore, one or two aperture-lens optical systems configured appropriate aperture parameters are both able to upgrade the beam propagation quality of high-power laser beams. The M2 factor of Gaussian beam passing through the multi-aperture optical system is a special case in this paper.
Keywords:  amplitude modulations (AMs)      phase fluctuations (PFs)      multiple hard-edged aperture      beam propagation factor  
Received:  20 August 2019      Revised:  04 February 2020      Accepted manuscript online: 
PACS:  42.60.Fc (Modulation, tuning, and mode locking)  
  42.55.-f (Lasers)  
  42.79.Ag (Apertures, collimators)  
  42.60.Fc (Modulation, tuning, and mode locking)  
Fund: Project supported by the Science Fund from the Shaanxi Provincial Education Department, China (Grant No. 18JK0723).
Corresponding Authors:  Xiangmei Zeng     E-mail:  xmzz79@163.com

Cite this article: 

Xiangmei Zeng(曾祥梅), Meizhi Zhang(张美志), Dongmei Cao(曹冬梅), Dingyu Sun(孙鼎宇), Hua Zhou(周花) M2-factor of high-power laser beams through a multi-apertured ABCD optical system 2020 Chin. Phys. B 29 064206

[1] Hui Z Q, Xu W X, Li X H, Guo P L, Zhang Y and Liu J S 2019 Nanoscale 11 6045
[2] Schlüter H 2008 Proc. SPIE 687402
[3] Siegman A E 1993 Proc. SPIE 1810 758
[4] He B, Lou Q H and Zhou J 2006 Opt. Express 14 2721
[5] He X M and Lü B D 2011 Chin. Phy. B 20 094210
[6] Meng L Q, Huang Z Q, Han Z G, Shen H and Zhua R H 2018 Opt. Laser Technol. 100 226
[7] Khonina S N, Ustinov A V and Porfirev A P 2018 Appl. Opt. 57 1410
[8] Huang S M, Nie J Y, Yang K G, Yan J W and Zhang R Z 2018 Optik 170 458
[9] Ge X L, Wang B Y and Guo C S 2015 J. Opt. Soc. Am. A 32 837
[10] Fu S Y, Wang T L, Zhang Z Y, Zhai Y W and Gao C Q 2017 Appl. Phys. B 123 275
[11] Ye F, Zhang J B, Xie J T and Deng D M 2018 Opt. Commun. 426 456
[12] Manes K R and Simmon W W 1985 J. Opt. Soc. Am. A 2 528
[13] Simmons W W, Hunt J T and Warren W E 1981 IEEE J. Quantum Electron. 17 1727
[14] Siegman A E 1990 Proc. SPIE 1224 2
[15] Chen R P, Zhong L X, Wu Q Y and Chew K H 2012 Opt. Laser Technol. 44 2015
[16] Xu H F, Zhang Z, Qu J and Huang W 2014 Opt. Express 22 22479
[17] Ye Z B, Wang Y, Zhao Z G, Liu C and Xiang Z 2014 Appl. Opt. 53 7963
[18] Cao C Q, Wang X, Zeng X D, Pan Z W, Luo L and Cheng Y H 2016 Optik 127 3701
[19] Lü B D and Zhang B 1997 Opt. Commun. 135 361
[20] Jiang H L and Zhao D M 2006 Opt. Commun. 264 18
[21] Ma Y and Ji X L 2012 Opt. Commun. 285 4793
[22] Ji X L and Li X Q 2011 Appl. Phys. B 104 207
[23] Tao R M, Si L, Ma Y X, Zhou P and Liu Z J 2012 J. Electromagn. Waves Appl. 26 1237
[24] Shao X L and Ji X L 2012 Acta Phys. Sin. 61 164209 (in Chinese)
[25] Zhang B, Chu X L and Li Q 2002 Chin. J. Lasers B 11 329
[26] Lü B D and Ji X L 2004 J. Opt. A: Pure Appl. Opt. 6 161
[27] Wen J J and Breazeale M A 1988 J. Acoust. Soc. Am. 83 1752
[28] Herrero R M, Mejias P M and Ariss M 1995 Opt. Lett. 20 124
[29] Mei Z R and Zhao D M 2005 Appl. Opt. 44 1381
[1] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[2] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[3] A cladding-pumping based power-scaled noise-like and dissipative soliton pulse fiber laser
Zhiguo Lv(吕志国), Hao Teng(滕浩), and Zhiyi Wei(魏志义). Chin. Phys. B, 2023, 32(2): 024207.
[4] Yb:CaF2–YF3 transparent ceramics ultrafast laser at dual gain lines
Xiao-Qin Liu(刘晓琴), Qian-Qian Hao(郝倩倩), Jie Liu(刘杰), Dan-Hua Liu(刘丹华), Wei-Wei Li(李威威), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2022, 31(11): 114205.
[5] Spatiotemporal mode-locked multimode fiber laser with dissipative four-wave mixing effect
Ming-Wei Qiu(邱明伟), Chao-Qun Cai(蔡超群), and Zu-Xing Zhang(张祖兴). Chin. Phys. B, 2022, 31(10): 104207.
[6] Spatio-spectral dynamics of soliton pulsation with breathing behavior in the anomalous dispersion fiber laser
Ying Han(韩颖), Bo Gao(高博), Jiayu Huo(霍佳雨), Chunyang Ma(马春阳), Ge Wu(吴戈),Yingying Li(李莹莹), Bingkun Chen(陈炳焜), Yubin Guo(郭玉彬), and Lie Liu(刘列). Chin. Phys. B, 2022, 31(7): 074208.
[7] Sequential generation of self-starting diverse operations in all-fiber laser based on thulium-doped fiber saturable absorber
Pei Zhang(张沛), Kaharudin Dimyati, Bilal Nizamani, Mustafa M. Najm, and S. W. Harun. Chin. Phys. B, 2022, 31(6): 064204.
[8] Tunable characteristic of phase-locked quantum cascade laser arrays
Zeng-Hui Gu(顾增辉), Jin-Chuan Zhang(张锦川), Huan Wang(王欢), Peng-Chang Yang(杨鹏昌), Ning Zhuo(卓宁), Shen-Qiang Zhai(翟慎强), Jun-Qi Liu(刘俊岐), Li-Jun Wang(王利军), Shu-Man Liu(刘舒曼), Feng-Qi Liu(刘峰奇), and Zhan-Guo Wang(王占国). Chin. Phys. B, 2021, 30(10): 104201.
[9] Continuous-wave Nd:KGd(WO4)2 single-longitudinal-mode laser
Rui-Jun Lan(兰瑞君), Guang-Hua Liu(刘广华), Huan-Huan Min(闵欢欢), Tong-Yu Dai(戴通宇), Ying-Jie Shen(申英杰), Peng-Hua Mu(穆鹏华), Cheng Ren(任承), De-Zhong Cao(曹德忠), and Xavier Mateos. Chin. Phys. B, 2021, 30(8): 084201.
[10] Generation of multi-wavelength square pulses in the dissipative soliton resonance regime by a Yb-doped fiber laser
Xude Wang(汪徐德), Simin Yang(杨思敏), Mengqiu Sun(孙梦秋), Xu Geng(耿旭), Jieyu Pan (潘婕妤), Shuguang Miao(苗曙光), and Suwen Li(李素文). Chin. Phys. B, 2021, 30(6): 064212.
[11] Generation of cavity-birefringence-dependent multi-wavelength bright-dark pulse pair in a figure-eight thulium-doped fiber laser
Xiao-Fa Wang(王小发), Dong-Xin Liu(刘东鑫), Hui-Hui Han(韩慧慧), and Hong-Yang Mao(毛红炀). Chin. Phys. B, 2021, 30(5): 054205.
[12] Zinc-oxide/PDMS-clad tapered fiber saturable absorber for passively mode-locked erbium-doped fiber laser
F D Muhammad, S A S Husin, E K Ng, K Y Lau, C A C Abdullah, and M A Mahdi. Chin. Phys. B, 2021, 30(5): 054204.
[13] Suppression of multi-pulse formation in all-polarization-maintaining figure-9 erbium-doped fiber mode-locked laser
Jun-Kai Shi(石俊凯), Deng-Feng Dong(董登峰), Ying-Ling Pan(潘映伶), Guan-Nan Li(李冠楠), Yao Li(黎尧), Li-Tuo Liu(刘立拓), Xiao-Mei Chen(陈晓梅), and Wei-Hu Zhou(周维虎). Chin. Phys. B, 2021, 30(1): 014206.
[14] Electron dynamics of active mode-locking terahertz quantum cascade laser
Qiushi Hou(侯秋实), Chang Wang(王长), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(12): 127302.
[15] Two-dimensionally controllable DSR generation from dumbbell-shaped mode-locked all-fiber laser
Zhi-Yuan Dou(窦志远), Bin Zhang(张斌), Jun-Hao Cai(蔡君豪), Jing Hou(侯静). Chin. Phys. B, 2020, 29(9): 094201.
No Suggested Reading articles found!