Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 050307    DOI: 10.1088/1674-1056/ab7ea2
GENERAL Prev   Next  

Experimental demonstration of tight duality relation inthree-path interferometer

Zhi-Jin Ke(柯芝锦)1,2, Yu Meng(孟雨)1,2, Yi-Tao Wang(王轶韬)1,2, Shang Yu(俞上)1,2, Wei Liu(刘伟)1,2, Zhi-Peng Li(李志鹏)1,2, Hang Wang(汪航)1,2, Qiang Li(李强)1,2, Jin-Shi Xu(许金时)1,2, Jian-Shun Tang(唐建顺)1,2, Chuan-Feng Li(李传锋)1,2, Guang-Can Guo(郭光灿)1,2
1 CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China;
2 CAS Center For Excellence in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  Bohr's principle of complementarity has a long history and it is an important topic in quantum theory, among which the famous example is the duality relation. The relation between visibility C and distinguishability D, C2 + D2 ≤1, has long been recognized as the only representative of the duality relation. However, recent researches have shown that this inequality is not good enough because it is not tight for multipath interferometers. Meanwhile, a tight bound for the multipath interferometer has been put forward. Here we design and experimentally implement a three-path interferometer coupling with path indicator states. The wave property of photons is characterized by l1-norm coherence measure, and the particle property is based on distinguishability of the indicator states. The new duality relation of the three-path interferometer is demonstrated in our experiment, which bounds the union of a right triangle and a part of elliptical area inside the quadrant of a unit circle. Data analysis confirms that the new bound is tight for photons in three-path interferometers.
Keywords:  duality relation      multi-path interferometer      principle of complementarity      foundations of quantum mechanics  
Received:  22 February 2020      Revised:  04 March 2020      Published:  05 May 2020
PACS:  03.65.-w (Quantum mechanics)  
  42.50.Xa (Optical tests of quantum theory)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  42.50.Ex (Optical implementations of quantum information processing and transfer)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFA0302700 and 2017YFA0304100), the National Natural Science Foundation of China (Grant Nos. 11822408, 11674304, 11774335, 61490711, 11474267, 11821404, 11325419, 11904356, and 91321313), the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2017492), the Foundation for Scientific Instrument and Equipment Development, Chinese Academy of Sciences (Grant No. YJKYYQ20170032), the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDY-SSW-SLH003), the Fundamental Research Funds for the Central Universities, China (Grant Nos. WK2470000026 and WK2030000008), Science Foundation of Chinese Academy of Sciences (Grant No. ZDRW-XH-2019-1), Anhui Initiative in Quantum Information Technologies, China (Grant Nos. AHY020100, AHYPT003, and AHY060300), the National Postdoctoral Program for Innovative Talents of China (Grant No. BX20180293), and the China Postdoctoral Science Foundation (Grant No. 2018M640587).
Corresponding Authors:  Jian-Shun Tang, Chuan-Feng Li     E-mail:  tjs@ustc.edu.cn;cfli@ustc.edu.cn

Cite this article: 

Zhi-Jin Ke(柯芝锦), Yu Meng(孟雨), Yi-Tao Wang(王轶韬), Shang Yu(俞上), Wei Liu(刘伟), Zhi-Peng Li(李志鹏), Hang Wang(汪航), Qiang Li(李强), Jin-Shi Xu(许金时), Jian-Shun Tang(唐建顺), Chuan-Feng Li(李传锋), Guang-Can Guo(郭光灿) Experimental demonstration of tight duality relation inthree-path interferometer 2020 Chin. Phys. B 29 050307

[1] Bohr N 1928 Nature 121 580
[2] Bohr N 1928 Naturwissenschaften 16 245
[3] Rauch H and Summhammer J 1984 Phys. Lett. A 104 44
[4] Summhammer J, Rauch H and Tuppinger D 1987 Phys. Rev. A 36 4447
[5] Buks E, Schuster R, Heiblum M, Mahalu D and Umansky V 1998 Nature 391 871
[6] Dürr S, Nonn T and Rempe G 1998 Nature 395 33
[7] Wootters W K and Zurek W H 1979 Phys. Rev. D 19 473
[8] Greenberger D M and Yasin A 1988 Phys. Lett. A 128 391
[9] Englert B G 1996 Phys. Rev. Lett. 77 2154
[10] Peng X H, Zhu X W, Fang X M, Feng M, Liu M L and Gao K L 2003 J. Phys. A: Math. Gen. 36 2555
[11] Peng X H, Zhu X W, Suter D, Du J F, Liu M L and Gao K L 2005 Phys. Rev. A 72 052109
[12] Dürr S, Nonn T and Rempe G 1998 Phys. Rev. Lett. 81 5705
[13] Wang Z H, Tian Y L, Yang C, Zhang P F, Li G and Zhang T C 2016 Phys. Rev. A 94 062124
[14] Zheng S B, Zhong Y P, Xu K, Wang Q J, Wang H, Shen L T, Yang C P, Martinis, J M, Cleland A N and Han S Y 2015 Phys. Rev. Lett. 115 260403
[15] Kaiser F, Coudreau T, Milman P, Ostrowsky D B and Tanzilli S 2012 Science 338 637
[16] Peruzzo A, Shadbolt P, Brunner N, Popescu S and O'Brien J L 2012 Science 338 634
[17] Tang J S, Li Y L, Xu X Y, Xiang G Y, Li C F and Guo G C 2012 Nat. Photon. 6 600
[18] Ma X S, Kofler J and Zeilinger A 2016 Rev. Mod. Phys. 88 015005
[19] Baumgratz T, Cramer M and Plenio M B 2014 Phys. Rev. Lett. 113 140401
[20] Streltsov A, Adesso G and Plenio M B 2017 Rev. Mod. Phys. 89 041003
[21] Bera M N, Qureshi T, Siddiqui M A and Pati A K 2015 Phys. Rev. A 92 012118
[22] Bagan E, Bergou J A, Cottrell S S and Hillery M 2016 Phys. Rev. Lett. 116 160406
[23] Yuan Y, Hou Z B, Zhao Y Y, Zhong H S, Xiang G Y, Li C F and Guo G C 2018 Opt. Express 26 4470
[24] Bagan E, Calsamiglia J, Bergou J A and Hillery M 2018 Phys. Rev. Lett. 120 050402
[25] Jaeger G, Shimony A and Vaidman L 1995 Phys. Rev. A 51 54
[26] Jia A A, Huang J H, Zhang T C and Zhu S Y 2014 Phys. Rev. A 89 042103
[1] Optimal phase estimation with photon-number difference measurement using twin-Fock states of light
J H Xu(徐佳慧), J Z Wang(王建中), A X Chen(陈爱喜), Y Li(李勇), G R Jin(金光日). Chin. Phys. B, 2019, 28(12): 120303.
No Suggested Reading articles found!