Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 058202    DOI: 10.1088/1674-1056/ab7ea1
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates

Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英)
Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
Abstract  It is of great significance to study the relationship between the excited state intramolecular proton transfer (ESIPT) properties and antioxidant activities of compounds in the field of life sciences. In this work, two novel compounds 5HF-OMe and 5HF-NH2 are designed through introducing a methoxy- and amino-group into the structure of 5-hydroxyflavone (5HF) respectively. The relationship between the ESIPT reaction and antioxidant activities of the three compounds is studied via the density functional theory (DFT) and time-dependent DFT (TD-DFT) methods. The calculated potential energy curves suggest that the rate of ESIPT reaction will gradually slow down from 5HF to 5HF-OMe and 5HF-NH2. In addition, the antioxidant activities of the three compounds gradually enhance from 5HF to 5HF-OMe and 5HF-NH2, which can be seen from the calculated energy gaps and ionization potential values. Interestingly, the above results imply that the rate of ESIPT reaction has a negative relationship with the antioxidant activities of the compounds, i.e., the slower rate of ESIPT reaction will reflect the higher antioxidant activity of the compound, which will provide valuable reference for detecting the antioxidant activity of compound via the photophysical method.
Keywords:  5-hydroxyflavone      excited state intramolecular proton transfer      antioxidant activity      density functional theory  
Received:  20 February 2020      Revised:  04 March 2020      Published:  05 May 2020
PACS:  82.39.Jn (Charge (electron, proton) transfer in biological systems)  
  31.15.ee (Time-dependent density functional theory)  
  87.15.ht (Ultrafast dynamics; charge transfer)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2019YFA0307701), the National Natural Science Foundation of China (Grant No. 11874180), and the Science and Technology Development Project of Jilin Province of China (Grant No. 20190103101JH).
Corresponding Authors:  Ying Shi     E-mail:  shi_ying@jlu.edu.cn

Cite this article: 

Chaofan Sun(孙朝范), Bifa Cao(曹必发), Hang Yin(尹航), Ying Shi(石英) Relationship between ESIPT properties and antioxidant activities of 5-hydroxyflavone derivates 2020 Chin. Phys. B 29 058202

[1] Huang P, Feng L, Oldham E A, Keating M J and Plunkett W 2000 Nature 407 390
[2] Pisoschi A M and Pop A 2015 Eur. J. Med. Chem. 97 55
[3] Yang X Y, Li Y, Li Y D, Ren X M, Zhang X Y, Hu D, Gao Y H, Xing Y W and Shang H C 2017 Front. Physiol. 8 600
[4] Muir S R, Collins G J, Robinson S, Hughes S, Bovy A, De Vos C H R, van Tunen A J and Verhoeyen M E 2001 Nat. Biotechnol. 19 470
[5] Paz M, Gullon P, Barroso M F, Carvalho A P, Domingues V F, Gomes A M, Becker H, Longhinotti E and Delerue-Matos C 2015 Food Chem. 172 462
[6] Lee Y M, Yoon Y, Yoon H, Park H M, Song S and Yeum K J 2017 Nutrients 9 1089
[7] Detsi A, Majdalani M, Kontogiorgis C A, Hadjipavlou-Litina D and Kefalas P 2009 Bioorg. Med. Chem. 17 8073
[8] Leopoldini M, Russo N and Toscano M 2011 Food Chem. 125 288
[9] Sandoval-Yanez C, Mascayano C and Martinez-Araya J I 2018 Arab. J. Chem. 11 554
[10] Magnani L, Gaydou E M and Hubaud J C 2000 Anal. Chim. Acta 411 209
[11] Norikane Y, Itoh H and Arai T 2004 J. Photochem. Photobiol. A 161 163
[12] Falkovskaia E, Sengupta P K and Kasha M 1998 Chem. Phys. Lett. 297 109
[13] Abo Markeb A and Abo El-Maali N 2014 Talanta 119 417
[14] Simkovitch R and Huppert D 2015 J. Phys. Chem. B 119 10244
[15] Chou P T, Chen Y C, Yu W S and Cheng Y M 2001 Chem. Phys. Lett. 340 89
[16] Ash S, De S P, Pyne S and Misra A 2010 J. Mol. Model. 16 831
[17] Mazzone G, Malaj N, Galano A, Russo N and Toscano M 2015 RSC Adv. 5 565
[18] Yang Y, Zhao J and Li Y 2016 Sci. Rep. 6 32152
[19] Yang Y, Chen Y, Zhao Y, Shi W, Ma F and Li Y 2019 J. Lumin. 206 326
[20] Wang Y S, Jia M, Zhang Q L, Song X Y and Yang D P 2019 Chin. Phys. B 28 103105
[21] Yang Y, Ding Y, Shi W, Ma F and Li Y 2020 J. Lumin. 218 116836
[22] Li Y Z, Xu B B, Song P, Ma F C and Sun M T 2017 J. Phys. Chem. C 121 12546
[23] Wang X F, Li Y Z, Song P, Ma F C and Yang Y H 2019 J. Phys. Chem. A 123 7401
[24] Shi X L, Yang Y H, Wang L H and Li Y Z 2019 J. Phys. Chem. C 123 4007
[25] Sun M T 2006 J. Chem. Phys. 124 054903
[26] Mu X, Wang J and Sun M 2019 J. Phys. Chem. C 123 14132
[27] Mu X, Zong H, Zhu L and Sun M 2020 J. Phys. Chem. C 124 2319
[28] Mu X, Wang X, Quan J and Sun M 2020 J. Phys. Chem. C 124 4968
[29] Stratmann R E, Scuseria G E and Frisch M J 1998 J. Chem. Phys. 109 8218
[30] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[31] Cossi M, Scalmani G, Rega N and Barone V 2002 J. Chem. Phys. 117 43
[32] Scalmani G and Frisch M J 2010 J. Chem. Phys. 132 114110
[33] Frisch M J, et al. 2009 Gaussian 09 Revision B01 (Gaussian, Inc., Wallingford)
[34] Parr R G, Szentpály L V and Liu S 1999 J. Am. Chem. Soc. 121 1922
[35] Sadasivam K and Kumaresan R 2011 Spectrochim. Acta Part. A 79 282
[36] Sun C, Li Y, Li B, Han J, Zhou Q, Yin H and Shi Y 2020 J. Mol. Liq. 297 111937
[37] Jeevitha D, Sadasivam K, Praveena R and Jayaprakasam R 2016 J. Mol. Struct. 1120 15
[38] Liu S, Ma Y Z, Yang Y F, Liu S S, Li Y Q and Song Y Z 2018 Chin. Phys. B 27 023103
[39] Peng L H, Liu S, Xu S Y, Chen L, Shan Y H, Wei W, Liang W Q and Gao J Q 2013 Phytomedicine 20 1082
[40] Valle J C d 2006 J. Chem. Phys. 124 104506
[41] Erzina D R, Zamilatskov I A, Kurochkina N M, Ponomarev G V and Tafeenko V A 2017 Acta Crystallogr. Sect. C: Struct. Chem. 73 68
[42] Kandasamy S and Rathinam K 2011 Mol. Phys. 109 839
[43] An C B, Li D, Lang R, Bu Y Z, Wang S, Zhang E H, Wang P, Ai X C, Zhang J P and Skibsted L H 2011 J. Agric. Food Chem. 59 12652
[44] Alasalvar C, Guder A, Gokce H, Kastas C A and Celik R C 2017 J. Mol. Struct. 1133 37
[45] Zhou M, Zhao J F, Cui Y L, Wang Q Y, Dai Y M, Song P and Xia L X 2015 J. Lumin. 161 1
[46] Wang Q, Gao F, Li H R and Zhang S T 2010 Chin. J. Chem. 28 901
[47] Wang Z M, Zhou F, Wang J, Zhao Z J, Qin A J, Yu Z Q and Tang B Z 2018 Sci. Chin.: Chem. 61 76
[48] Kar R, Chandrakumar K R S and Pal S 2007 J. Phys. Chem. A 111 375
[49] Rajan V K, Hasna C K and Muraleedharan K 2018 Food Chem. 262 184
[50] Pasha F A, Cho S J, Beg Y and Tripathi Y B 2007 Med. Chem. Res. 16 408
[51] Murakami Y, Ishii H, Takada N, Tanaka S, Machin M, Ito S and Fujisawa S 2008 Anticancer Res. 28 699
[52] Vargas-Sanchez R D, Mendoza-Wilson A M, Balandran-Quintana R R, Torrescano-Urrutia G R and Sanchez-Escalante A 2015 Comput. Theor. Chem. 1058 21
[53] Lone S H, Jameel S, Bhat M A, Lone R A, Butcher R J and Bhat K A 2018 RSC Adv. 8 8259
[54] Sun C, Zhao H, Liu X, Yin H and Shi Y 2018 Org. Chem. Front. 5 3435
[55] Sutradhar T and Misra A 2018 J. Phys. Chem. A 122 4111
[1] Enhanced thermoelectric properties in two-dimensional monolayer Si2BN by adsorbing halogen atoms
Cheng-Wei Wu(吴成伟), Changqing Xiang(向长青), Hengyu Yang(杨恒玉), Wu-Xing Zhou(周五星), Guofeng Xie(谢国锋), Baoli Ou(欧宝立), and Dan Wu(伍丹). Chin. Phys. B, 2021, 30(3): 037304.
[2] Adsorption of propylene carbonate on the LiMn2O4 (100) surface investigated by DFT + U calculations
Wei Hu(胡伟), Wenwei Luo(罗文崴), Hewen Wang(王鹤文), and Chuying Ouyang(欧阳楚英). Chin. Phys. B, 2021, 30(3): 038202.
[3] CCSD(T) study on the structures and chemical bonds of AnO molecules (An=\,Bk-Lr)
Xiyuan Sun(孙希媛), Pengfei Yin(殷鹏飞), Kaiming Wang(王开明), and Gang Jiang(蒋刚). Chin. Phys. B, 2021, 30(3): 033101.
[4] First-principles study of co-adsorption behavior of O2 and CO2 molecules on δ -Pu(100) surface
Chun-Bao Qi(戚春保), Tao Wang(王涛), Ru-Song Li(李如松), Jin-Tao Wang(王金涛), Ming-Ao Qin(秦铭澳), and Si-Hao Tao(陶思昊). Chin. Phys. B, 2021, 30(2): 026601.
[5] Insights into the physical properties and anisotropic nature of ErPdBi with an appearance of low minimum thermal conductivity
S K Mitro, R Majumder, K M Hossain, Md Zahid Hasan, Md Emran Hossain, and M A Hadi. Chin. Phys. B, 2021, 30(1): 016203.
[6] Two ultra-stable novel allotropes of tellurium few-layers
Changlin Yan(严长林), Cong Wang(王聪), Linwei Zhou(周霖蔚), Pengjie Guo(郭朋杰), Kai Liu(刘凯), Zhong-Yi Lu(卢仲毅), Zhihai Cheng(程志海), Yang Chai(柴扬), Anlian Pan(潘安练), Wei Ji(季威). Chin. Phys. B, 2020, 29(9): 097103.
[7] Vanadium based XVO3 (X=Na, K, Rb) as promising thermoelectric materials: First-principle DFT calculations
N A Noor, Nosheen Mushahid, Aslam Khan, Nessrin A. Kattan, Asif Mahmood, Shahid M. Ramay. Chin. Phys. B, 2020, 29(9): 097101.
[8] Construction of monolayer IrTe2 and the structural transition under low temperatures
Aiwei Wang(王爱伟), Ziyuan Liu(刘子媛), Jinbo Pan(潘金波), Qiaochu Li(李乔楚), Geng Li(李更), Qing Huan(郇庆), Shixuan Du(杜世萱), Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2020, 29(7): 078102.
[9] Structural evolution and magnetic properties of ScLin (n=2-13) clusters: A PSO and DFT investigation
Lu Li(栗潞), Xiu-Hua Cui(崔秀花), Hai-Bin Cao(曹海宾), Yi Jiang(姜轶), Hai-Ming Duan(段海明), Qun Jing(井群), Jing Liu(刘静), Qian Wang(王倩). Chin. Phys. B, 2020, 29(7): 077101.
[10] Gd impurity effect on the magnetic and electronic properties of hexagonal Sr ferrites: A case study by DFT
Masomeh Taghipour, Mohammad Yousefi, Reza Fazaeli, Masoud Darvishganji. Chin. Phys. B, 2020, 29(7): 077505.
[11] A theoretical study on chemical ordering of 38-atom trimetallic Pd-Ag-Pt nanoalloys
Songül Taran, Ali Kemal Garip, Haydar Arslan. Chin. Phys. B, 2020, 29(7): 077801.
[12] Ab initio study of structural, electronic, thermo-elastic and optical properties of Pt3Zr intermetallic compound
Wahiba Metiri, Khaled Cheikh. Chin. Phys. B, 2020, 29(4): 047101.
[13] Theoretical study on the relationship between the position of the substituent and the ESIPT fluorescence characteristic of HPIP
Xin Zhang(张馨), Jian-Hui Han(韩建慧), You Li(李尤), Chao-Fan Sun(孙朝范), Xing Su(苏醒), Ying Shi(石英), Hang Yin(尹航). Chin. Phys. B, 2020, 29(3): 038201.
[14] Computational screening of doping schemes forLiTi2(PO4)3 as cathode coating materials
Yu-Qi Wang(王宇琦), Xiao-Rui Sun(孙晓瑞), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉). Chin. Phys. B, 2020, 29(3): 038202.
[15] Theoretical investigations of collision dynamics of cytosine by low-energy (150-1000 eV) proton impact
Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), Xue-Fen Xu(许雪芬), Chao-Yi Qian(钱超义). Chin. Phys. B, 2020, 29(2): 023401.
No Suggested Reading articles found!