Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 050306    DOI: 10.1088/1674-1056/ab7e9a
GENERAL Prev   Next  

Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states

Liang Tian(田亮)1, Li-Li Sun(孙立莉)2, Xiao-Yu Zhu(朱小瑜)1,3, Xue-Ke Song(宋学科)4, Lei-Lei Yan(闫磊磊)1, Er-Jun Liang(梁二军)1, Shi-Lei Su(苏石磊)1, Mang Feng(冯芒)1,5
1 School of Physics, Zhengzhou University, Zhengzhou 450001, China;
2 College of Physics, Tonghua Normal University, Tonghua 134000, China;
3 College of Science, Henan University of Engineering, Zhengzhou 451191, China;
4 School of Physics and Material Science, Anhui University, Hefei 230601, China;
5 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, China
Abstract  We propose schemes to realize quantum state transfer and prepare quantum entanglement in coupled cavity and cavity-fiber-cavity systems, respectively, by using the dressed state method. We first give the expression of pulses shape by using dressed states and then find a group of Gaussian pulses that are easy to realize in experiment to replace the ideal pulses by curve fitting. We also study the influence of some parameters fluctuation, atomic spontaneous emission, and photon leakage on fidelity. The results show that our schemes have good robustness. Because the atoms are trapped in different cavities, it is easy to perform different operations on different atoms. The proposed schemes have the potential applications in dressed states for distributed quantum information processing tasks.
Keywords:  quantum state transfer      dressed state method      distributed quantum information processing  
Received:  20 January 2020      Revised:  01 March 2020      Published:  05 May 2020
PACS:  03.65.-w (Quantum mechanics)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11804308).
Corresponding Authors:  Shi-Lei Su     E-mail:

Cite this article: 

Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒) Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states 2020 Chin. Phys. B 29 050306

[1] Christandl M, Datta N, Dorlas T C, Ekert A, Kay A and Landahl A J 2005 Phys. Rev. A 71 032312
[2] Sillanpää M A, Park J I and Simmonds R W 2007 Nature 449 438
[3] Almeida G M A, de Moura F A B F and Lyra M L 2018 Phys. Lett. A 382 1335
[4] Huang B H, Kang Y H, Chen Y H, Shi Z C, Song J and Xia Y 2018 Phys. Rev. A 97 012333
[5] Almeida G M A, Ciccarello F, Apollaro T J G and Souza A M C 2016 Phys. Rev. A 93 032310
[6] Man Z X, An N B and Xia Y J 2014 Ann. Phys. 349 209-219
[7] Kimble H J 2008 Nature 453 1023
[8] Li Y H, Li X L, Sang M H, Nie Y Y and Wang Z S 2013 Quantum Inf. Process. 12 3835
[9] Bennett C H, Brassard G, Crepeau C, Jozsa R, Peres A and Wootters W K 1993 Phys. Rev. Lett. 70 1895
[10] Karlsson A, Koashi M and Imoto N 1999 Phys. Rev. A 59 162
[11] Malaney R A 2010 Phys. Rev. A 81 042319
[12] Hong C H, Heo J, Lim J I and Yang H J 2014 Chin. Phys. B 23 090309
[13] He X L, Su Q P, Zhang F Y and Yang C P 2014 Quantum Inf. Process. 13 1381
[14] Deng Z J, Feng M and Gao K L 2007 Phys. Rev. A 75 024302
[15] Clark S, Peng A, Gu M and Parkins S 2003 Phys. Rev. Lett. 91 177901
[16] Zheng B, Shen L T and Chen M F 2016 Quantum Inf. Process. 15 2181
[17] Wu J L and Su S L 2019 Europhys. Lett. 126 30001
[18] Wu J L and Su S L 2019 J. Phys. A: Math. Theor. 52 335301
[19] Liu J X, Ye J Y, Yan L L, Su S L and Feng M 2020 J. Phys. B 53 035503
[20] Teper N 2018 AIP Conf. Proc. 1936 020030
[21] Torres J P, Deyanova Y, Torner L and Molina-Terriza G 2003 Phys. Rev. A 67 052313
[22] Togan E, Chu Y, Trifonov A S, Jiang L, Maze J, Childress L, Dutt M V G, Sorensen A S, Hemmer P R, Zibrov A S and Lukin M D 2011 Nature 478 497
[23] Jin Z, Su S L and Zhang S 2019 Phys. Rev. A 100 052332
[24] Heilmann R, Grafe M, Nolte S and Szameit A 2015 Sci. Bull. 60 96
[25] Liu A P, Cheng L Y, Guo Q, Su S L, Wang H F and Zhang S 2019 Chin. Phys. B 28 020301
[26] Lemr K 2011 J. Phys. B 44 195501
[27] Zhu X Y, Liang E J and Su S L 2019 J. Opt. Soc. Am. B. 36 1937
[28] Su S L 2018 Chin. Phys. B 27 110304
[29] Su S L, Liang E, Zhang S, Wen J J, Sun L L, Jin Z and Zhu A D 2016 Phys. Rev. A 93 012306
[30] Su S L, Gao Y, Liang E and Zhang S 2017 Phys. Rev. A 95 022319
[31] Su S L, Tian Y Z, Shen H Z, Zang H, Liang E and Zhang S 2017 Phys. Rev. A 96 042335
[32] Su S L, Shen H Z, Liang E and Zhang S 2018 Phys. Rev. A 98 032306
[33] Axline C, Burkhart L, Pfaff W, Zhang M, Chou K, Campagne-Ibarcq P, Reinhold P, Frunzio L, Girvin S M, Jiang L, Devoret M H and Schoelkopf R J 2018 Nat. Phys. 14 705
[34] Bergmann K, Theuer H and Shore B W 1998 Rev. Mod. Phys. 70
[35] Lu M, Xia Y, Zhao L T, Song J and An N B 2014 Phys. Rev. A 89 012326
[36] Muga J G, Chen X, Ibáñez S, Lizuain I and Ruschhaupt A 2010 J. Phys. B 43 085509
[37] Chen Y H, Xia Y, Song J and Chen Q Q 2015 Sci. Rep. 5 15616
[38] Song X K, Ai Q, Qiu J and Deng F G 2016 Phys. Rev. A 93 052324
[39] Masuda S and Nakamura K 2011 Phys. Rev. A 84 043434
[40] del Campo A, Rams M M and Zurek W H 2012 Phys. Rev. Lett. 109 115703
[41] Berry M V 2009 J. Phys. A: Math. Theor. 42 365303
[42] Torrontegui E, Lizuain I, González-Resines S, Tobalina A, Ruschhaupt A, Kosloff R and Muga J G 2017 Phys. Rev. A 96 022133
[43] Ibáñez S, Martínez-Garaot S, Chen X, Torrontegui E and Muga J G 2011 Phys. Rev. A 84 023415
[44] Chen X, Torrontegui E and Muga J G 2011 Phys. Rev. A 83 062116
[45] Du Y X, Yue X X, Liang Z T, Li J Z, Yan H and Zhu S L 2017 Phys. Rev. A 95 043608
[46] Lu M, Zhang C L, Zhang B and Lin W S 2019 Laser Phys. Lett. 16 045206
[47] Tseng S Y. Wen R D, Chiu Y F and Chen X 2014 Opt. Express 22 18849
[48] Kiely A, Benseny A, Busch T and Ruschhaupt A 2016 J. Phys. B 49 215003
[49] Impens F and Guéry-Odelin D 2017 Phys. Rev. A 96 043609
[50] Shen C P, Wu J L, Su S L and Liang E 2019 Opt. Lett. 44 2036
[51] Chen X and Muga J G 2012 Phys. Rev. A 86 033405
[52] Baksic A, Ribeiro H and Clerk A A 2016 Phys. Rev. Lett. 116 230503
[53] Kang Y H, Chen Y H, Shi Z C, Song J and Xia Y 2016 Phys. Rev. A 94 052311
[54] Ban Y, Jiang L X, Li Y C, Wang L J and Chen X 2018 Opt. Express 26 31137-31149
[55] Wu J L, Ji X and Zhang S 2017 Sci. Rep. 7 46255
[56] Wu J L, Ji X and Zhang S 2017 Quantum Inf. Process. 16 294
[57] Muga J G, Chen X, Ruschhaupt A and Guéry-Odelin D 2009 J. Phys. B 42 241001
[58] Kang Y H, Chen Y H, Wu Q C, Huang B H, Song J and Xia Y 2016 Sci. Rep. 6 36737
[59] Schaff J F, Song X L, Capuzzi P, Vignolo P and Labeyrie G 2011 New J. Phys. 13 113017
[60] Wang Z, Xia Y, Chen Y H and Song J 2016 Eur. Phys. J. D 70 162
[61] Chen X and Muga J G 2010 Phys. Rev. A 82 053403
[62] Zhang J, Li F G, Xie Y, Wu C W, Ou B Q, Wu W and Chen P X 2018 Phys. Rev. A 98, 052323
[63] Chen Y H, Xia Y, Wu Q C, Huang B H and Song J 2016 Phys. Rev. A 93 052109
[64] Wu J L, Su S L, Ji X and Zhang S 2017 Ann. Phys. 386 34
[65] Martínez-Garaot S, Torrontegui E, Chen X and Muga J G 2014 Phys. Rev. A 89 053408
[66] Chen Y H, Xia Y, Chen Q Q and Song J 2015 Phys. Rev. A 91 012325
[67] Facchi P, Marmo G and Pascazio S 2009 J. Phys: Conf. Ser. 196 012017
[68] Shen L T, Chen X Y, Yang Z B, Wu H Z and Zheng S B 2011 Phys. Rev. A 84 064302
[69] Vitanov N V, Halfmann T, Shore B W and Bergmann K 2001 Ann. Rev. Phys. Chem. 52 763
[70] Vitanov N V, Suominen K A and Shore B W 1999 J. Phys. B 32 4535
[71] Serafini A, Mancini S and Bose S 2006 Phys. Rev. Lett. 96 010503
[72] Kang Y H, Chen Y H, Shi Z C, Huang B H, Song J and Xia Y 2017 Phys. Rev. A 96 022304
[1] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[2] Quantum state transfer via a hybrid solid-optomechanical interface
Pei Pei(裴培), He-Fei Huang(黄鹤飞), Yan-Qing Guo(郭彦青), Xing-Yuan Zhang(张兴远), Jia-Feng Dai(戴佳峰). Chin. Phys. B, 2018, 27(2): 024203.
[3] Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
Jiong Cheng(程泂), Xian-Ting Liang(梁先庭), Wen-Zhao Zhang(张闻钊), Xiangmei Duan(段香梅). Chin. Phys. B, 2018, 27(12): 120302.
[4] Quantum information transfer between topological and conventional charge qubits
Jun Li(栗军) and Yan Zou(邹艳). Chin. Phys. B, 2016, 25(2): 027302.
[5] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling, Chen Mei-Feng. Chin. Phys. B, 2015, 24(7): 070310.
[6] High-dimensional quantum state transfer in a noisy network environment
Qin Wei, Li Jun-Lin, Long Gui-Lu. Chin. Phys. B, 2015, 24(4): 040305.
[7] Distributed quantum computation with superconducting qubit via LC circuit using dressed states
Wu Chao, Fang Mao-Fa, Xiao Xing, Li Yan-Ling, Cao Shuai. Chin. Phys. B, 2011, 20(2): 020305.
[8] Long-distance quantum state transfer through cavity-assisted interaction
Li Yu-Ning, Mei Feng, Yu Ya-Fei, Zhang Zhi-Ming. Chin. Phys. B, 2011, 20(11): 110305.
[9] High entanglement generation and high fidelity quantum state transfer in a non-Markovian environment
Li Yan-Ling, Fang Mao-Fa. Chin. Phys. B, 2011, 20(10): 100312.
[10] Transferring an N-atom state between two distant cavities via an optical fiber
Ma Song-She, Chen Mei-Feng. Chin. Phys. B, 2009, 18(8): 3247-3250.
[11] Quantum communication in spin star configuration
Deng Hong-Liang, Fang Xi-Ming. Chin. Phys. B, 2008, 17(2): 702-709.
No Suggested Reading articles found!